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Abstract

We suggest musical emotion operates mimetically with respect to emotion-

signifying movement. In service of  this hypothesis, we present an experiment in 

which subjects use a computer program to create representations of  several 

emotions in either music or animated motion, and the dynamic properties of  

these representations are quantitatively compared. We show the representations 

created by subjects are significantly more similar within emotion groups than 

within task groups, providing strong evidence in support of  our hypothesis. 

Along the way, we propose a schema for classifying cross-modal mappings, and 

argue that cross-modal mapping in general, and music-motion-emotion mappings 

in particular, are good candidates for universal human predispositions.
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1 Introduction

We perceive the world all at once. Making sense of  our environment requires the 

integration of  multiple simultaneous perceptual streams. Tracking relationships 

between these streams is how we understand what is happening around us. This 

is a matter of  great evolutionary importance: we have good reason to be alert if  

what we are looking at jumps and makes a sound, or if  we hear something at or 

beyond the limits of  our field of  vision. Correspondences such as these are not 

rationally identified – solemnly contemplating the roar leads into the lion's 

mouth – but are a function of  involuntary perceptual processes. Co-occurrence, 

for example, is one of  several natural indicators of  correspondence: when the 

dynamic contours of  a sound and a movement are synchronized, we tend to 

perceive the two as a unified whole, even if  the movement is not the source of  the 

sound. This tendency is flexible and promiscuous: we often hear sound as 

signifying movement even if  there is no real movement at all. The capacity to 

cross-modally map sound to implied movement helped our ancestors survive in 

the wilderness; a more common use is the enjoyment of  a well-made film. We 

argue that this capacity is what allows us to hear music as signifying emotion. 

Following Meyer's (1956) hypothesis that “music can be heard as imitating the 

dynamics of  behavior”, we suggest musical emotion operates mimetically with 

respect to emotion-signifying movement.

 The present work has two goals. First, we hope to provide a preliminary 

theoretical framework for understanding cross-modal mapping, and to point 

toward possible programs for future research. To this end, we undertake an 

extensive review of  the relevant literature. This review serves to draw 

connections between projects which have something to say about cross-modal 
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mapping, but have remained more-or-less isolated. In doing so, we veer far afield 

of  emotion recognition in its most basic sense, exploring such subjects as 

synesthesia, infant language learning strategies, and the history of  universalist 

versus relativist approaches to musicological practice. In the course of  this 

review, we make two material o!erings. We propose a schema for classifying 

cross-modal mappings, and we provide evidence that cross-modal mapping in 

general, and music-motion-emotion mappings in particular, are good candidates 

for universal human predispositions. Our second goal is to provide empirical 

evidence that musical emotion is imitative of  emotion-signifying movement. To 

this end, we present an experiment in which subjects use a computer program to 

create representations of  several emotions in both music and animated motion, 

and the dynamic properties of  these representations are quantitatively 

compared.

2 Background
2.1 What is emotion?

Any study concerning emotion is obliged to provide at least a cursory, working 

explanation of  what “emotion” might be. The question “What is emotion?” is 

ancient, and most or all proposed definitions seem inadequate – either too loose 

for inclusion in scientific discourse, or so rigid as to sever every link to ordinary 

language. Taxonomizing and cataloging the history of  this problem is beyond the 

scope of  this work, as is any serious attempt to solve it. Rather than heroically 

proposing some new gymnastic definitional criteria, we dodge the problem by 

splitting it in two.

 Directly following the work of  Andrea Scarantino (2005), we see the 

question “What is emotion?” as concealing two related but fundamentally 
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separate problems. Many (if  not most) attempts to define “emotion” have been 

stymied by a tendency to conflate these two problems; our strategy will be to 

focus on one and delegate the other to ambitious philosophers. The first problem 

is finding a definition of  emotion suitable for scientific use. Implied here is the 

process of  examining the inexact, scientifically unsuitable, ordinary use of  the 

term “emotion” and proceeding to explicate, a la Carnap (1950), new related 

theoretical constructs. These constructs would be much narrower in meaning 

than those implied by ordinary language, but may outline categories 

constituting what Quine (1969) calls natural kinds, or groups of  things about 

which scientific generalizations are possible. Scarantino (2005) refers to the 

production of  these constructs as the Explicating Emotion Project.

 The second problem is figuring out how the ordinary language term 

“emotion” is used. Rather than constructing scientific categories with necessary 

and su!cient conditions for inclusion, analysis of  ordinary language suggests 

using a family resemblance model (Wittgenstein, 1953). That is, something can 

be considered a member of  the emotion family if  it has a certain number of  

“emotional” traits, but it is possible for family members to possess non-

overlapping sets of  traits and thus be fundamentally dissimilar. An account of  

emotion in these terms would be completely compatible with (and indeed 

derived from) ordinary language, but resistant to scientific generalization. 

Emotions in this sense may not form a natural kind (Gri!ths, 2004). Scarantino 

calls the task of  explaining emotional family resemblance the Folk-Emotion 

Project. In its understanding of  emotion as a general concept, the present work 

takes the Folk-Emotion Project as its basis.

 Investigation of  how “anger” – or any other emotional concept – 

manifests can proceed perfectly well without a precise, scientific definition. It is 

su!cient for most purposes to ensure that all exemplars of  the invoked concept 
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are empirically certified as authentic. That is, if  subjects in an experiment view 

or listen to a stimulus and label it as “angry”, and this labeling is shown to be 

statistically significant, we should trust them. In other words, at least with 

respect to natural language and everyday human experience, “emotion” is 

whatever people say it is.

 The details of  an experimental methodology may imply a certain 

theoretical stance toward emotion. For example, asking subjects to rank the 

emotion in a piece of  music on a scale from “positive” to “negative” assumes that 

emotion varies on some dimension which corresponds to those terms. Our 

methodology assumes only that emotions can be grouped into categories based 

on similarity. We hope this assumption is relatively theory-neutral; that is, it 

may mesh fruitfully with dimensional, social, or other theories of  emotion, so 

long as those theories admit emotions may be compared to other emotions on the 

basis of  similarity or dissimilarity. That this is true with respect to everyday 

emotional thinking in Western subjects has been confirmed by Shaver et al. 

(1987). Shaver asked subjects to sort cards printed with emotion words into 

categories, creating an emotional distance matrix which was subjected to cluster 

analysis. This analysis found emotions fit into five broad categories: love, joy/

surprise, anger, sadness, and fear.

 The present study focuses on recognition, and not induction, of  emotion. 

Emotion induction is a complicated process not cleanly reducible to a small set of 

investigable factors. It is easy to conceive, for example, of  a happy-seeming piece 

of  music which makes a listener feel sad by way of  an ironic contextual 

presentation, such as in a film when a character has just died. Further, the idea 

that emotional induction during music listening can occur at all is somewhat 

controversial. Some philosophers of  music, such as Kivy (1989) and Meyer 

(1956), believe listeners habitually confuse induction and recognition. Listeners 
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may say they are feeling emotions sympathetically with some music, when in fact 

they are only recognizing those emotions as being expressed. Determining the 

fact of  the matter is di!cult, in no small part because the problem itself  calls 

into question the judgment of  the experimental subjects. A number of  strategies 

have been devised to work around this stumbling block, including observing 

cognitive changes during listening (Martin & Metha 1997; Balch et al, 1999), 

measuring physiological arousal (Bartlett, 1996; Krumhansl 1997), and taking 

detailed subject reports (Kenealy 1988; Zentner et al, 2000; Sloboda & O'Neill, 

2001). A review of  over 100 studies by Juslin and Laukka (2004) concludes there 

is su!cient evidence to claim that music induces emotions, but also notes that 

the range of  emotions induced by music seems to be very di"erent from the 

range of  emotions which can be recognized in it.

 The reduced range of  musically induced emotion is demonstrated by 

Sloboda and O'Neill (2001). Using an experimental paradigm inspired by 

Csikszentmihalyi and Lefevre (1989), the authors equipped subjects with pagers 

and paged them at random once within every 2-hour interval during the day. 

When paged, subjects were instructed to write down in a log book information 

about their most recent experience of  music listening. Subjects reported music 

either made them feel “more positive, more alert, and more focused in the 

present”, or caused them to become nostalgic, thinking about “things and people 

not present”. The di"erence in range between these reports and everyday 

thinking about musically induced emotion is good evidence that induction and 

recognition are decoupled. 

 Conveniently, emotion recognition in music is much easier to study and 

substantiate than induction. If  a subject claims to recognize an emotion in music, 

there is little reason to distrust them, so subject reports become much more 
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useful. Further, while verifiable reports of  emotional induction are ambiguous 

and sparse, reports of  emotion recognition are specific and plentiful.

2.2 Emotion Recognition

A survey of  the literature on recognition of  emotions in various modalities 

follows, with special emphasis on results which suggest recognition in di!erent 

modalities may be governed by similar processes.

2.2.1 Emotion recognition in music

That emotion may be recognized in music is uncontroversial. More interesting is 

to ask which emotions may be recognized, and which are o!-limits. Certainly 

some music is happy, and other music is sad, but is there jealous music? Guilty 

music? Further, what properties allow us to distinguish happy from sad music? 

Are these judgments unreliable and subjective, or is there a broad consensus 

about what music is happy and what music is sad?

 Juslin and Laukka's (2004) meta-study concluded that music listeners' 

judgments regarding emotion are “systemic and reliable, and can thus be 

predicted with reasonable accuracy.” Such judgments were only marginally 

a!ected by the level of  musical training, age, and gender of  the listener. That is, 

there is broad consensus regarding the recognition of  emotional content in 

music. Further, the emotion recognition process is nearly immediate. Peretz et al. 

(1998) found subjects were able to accurately judge the emotional tone of  

musical excerpts in well under 3 seconds. However, subjects were less likely to 

agree on di!erences within emotional categories, indicating limits on the 

precision with which music can represent emotion. Juslin (2005) lists three 

possible reasons for this imprecision. First, it may be that music's ability to 
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communicate emotions is “heavily dependent on its similarity to other forms of  

non-verbal communication” and is thus similarly limited. Second, there is a great 

deal of  redundancy built in to the structure of  musical features which 

communicate emotion, placing a limit on expressive specificity. Third, music is 

not designed solely to convey emotion, and so other considerations may often 

take precedence.

 Juslin and Laukka (2004) also compiled a list of  the emotional states most 

frequently recognized by listeners along with their attendant musical features. 

Their approach implies a parameterization of  music based on the terminology of  

Western music theory. Their results are summarized in table 1. 1 While this 

analysis is limited by its reliance on the vocabulary of  Western music theory, it 

does indicate that emotion recognition is reliably accompanied by certain sets of  

musical features. That is, the presence of  these musical features seems to be a 

su!cient condition for recognition of  the emotion.

 Juslin (2000) suggests a probabilistic model for quantifying the 

contributions of  various musical features to both the production and recognition 

of  emotion in music. This model is based on Brunswik's (1956) lens model and 

Hursch's (1964) lens model equation (LME). Thirty listeners judged the 

emotions expressed in performances of  three short musical pieces by three 

professional guitarists. Multiple regression analysis was used to determine the 

relationship between musical features and performer intention, as well as the 

relationship between musical features and listener interpretation. The LME was 

then applied to quantify how closely the expressive codes of  the performers 

matched the interpretive codes of  the listeners. This approach yielded results 

similar to those summarized above: “Anger was associated with fast tempo, high
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Anger Fast tempo, small tempo variability, minor mode, atonality, dissonance, 
high sound level, small loudness variability, high pitch, small pitch 
variability, ascending pitch, major 7th and augmented 4th intervals, 
raised singer’s formant, staccato articulation, moderate articulation 
variability, complex rhythm, sudden rhythmic changes (e.g., 
syncopations), sharp timbre, spectral noise, fast tone attacks/decays, 
small timing variability, accents on tonally unstable notes, sharp 
contrasts between “long” and “short” notes, accelerando, medium-fast 
vibrato rate, large vibrato extent, micro-structural irregularity

Happiness Fast tempo, small tempo variability, major mode, simple and consonant 
harmony, medium-high sound level, small sound level variability, high 
pitch, much pitch variability, wide pitch range, ascending pitch, perfect 
4th and 5th intervals, rising micro intonation, raised singer’s formant, 
staccato articulation, large articulation variability, smooth and fluent 
rhythm, bright timbre, fast tone attacks, small timing varibility, sharp 
contrasts between “long” and “short” notes, medium-fast vibrato rate, 
medium vibrato extent, micro-structural regularity

Tenderness Slow tempo, major mode, consonance, medium-low sound level, small 
sound level variability, low pitch, fairly narrow pitch range, lowered 
singer’s formant, legato articulation, small articulation variability, slow 
tone attacks, soft timbre, moderate timing variability, soft contrasts 
between long and short notes, accents on tonally stable notes, medium 
fast vibrato, small vibrato extent, micro-structural regularity

Sadness Slow tempo, minor mode, dissonance, low sound level, moderate sound 
level variability, low pitch, narrow pitch range, descending pitch, 
“flat” (or falling) intonation, small intervals (e.g., minor 2nd), lowered 
singer’s formant, legato articulation, small articulation variability, dull 
timbre, slow tone attacks, large timing variability (e.g., rubato), soft 
contrasts between “long” and “short” notes, pauses, slow vibrato, small 
vibrato extent, ritardando, micro-structural irregularity

Fear Fast tempo, large tempo variability, minor mode, dissonance, low sound 
level, large sound level variability, rapid changes in sound level, high 
pitch, ascending pitch, wide pitch range, large pitch contrasts, staccato 
articulation, large articulation variability, jerky rhythms, soft timbre, 
very large timing variability, pauses, soft tone attacks, fast vibrato rate, 
small vibrato extent, micro-structural irregularity

8
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sound level, a lot of  HF [high frequency] energy in the spectrum, legato 

articulation, and small articulation variability; sadness was associated with slow 

tempo, low sound level, little HF energy in the spectrum, legato articulation, 

and small articulation variability; happiness was associated with fast tempo, high 

sound level, intermediate amount of  HF energy in the spectrum, staccato 

articulation, and much articulation variability; fear was associated with slow 

tempo, very low sound level, little HF energy in the spectrum, staccato 

articulation, and large articulation variability.” (Juslin, 2000) Expressive codes 

used di!ered from performer to performer, but despite this, each performer was 

intelligible to all of  the listeners. Presumably because melody is di"cult to 

parameterize, and performers are scarce, the melodies used were fixed 

throughout the experiment, and melody-related parameters were not included in 

the regression analysis. This limitation prevented the study from assessing the 

e!ects of  changes in contour, step size, consonance, etc.

 With respect to emotional experience in day-to-day life, it is important to 

note that the emotions identified by the above studies (happiness, sadness, anger, 

fear, and tenderness) are a very small subset of  states typically considered 

emotional. Shaver et al. (1987) asked 100 subjects to rate 213 possible emotion 

names on a scale of  1 to 4, with 1 meaning “I would definitely not call this an 

emotion” and 4 meaning “I would definitely call this an emotion”. A number of  

high ranking candidates are notably absent from most studies on music and 

emotion, including jealousy (3.81), grief  (3.65), guilt (3.53), embarrassment 

(3.49), shame (3.43), and disgust (3.42). What emotions can and cannot be 

expressed in music may be valuable information with respect to how, exactly, the 

recognition of  musical emotions takes place.
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2.2.2 Emotion recognition in speech

A complete review of  historical approaches to emotional communication in 

speech is beyond the scope of  the present work. I o!er a brief  survey of  recent 

empirical work, drawing heavily from Scherer (2003).

 Scherer (2003) notes that “the basis of  any functionally valid 

communication of  emotion via vocal expression is that di!erent types of  emotion 

are actually characterized by unique patterns or configurations of  acoustic cues. 

[...] Without such distinguishable acoustic patterns for di!erent emotions, the 

nature of  the underlying speaker state could not be communicated reliably”. 

Additionally, changes in acoustic parameters are linked to physiological changes, 

i.e. experiencing a given emotion changes the way people speak. The following 

quote is representative of  how this idea is typically framed in the literature: “For 

instance, many of  us have experienced talking in an unwittingly loud voice when 

feeling gleeful, speaking in an uncharacteristically high-pitched voice when 

greeting a sexually desirable person, or talking with marked vocal tremor while 

giving a public speech.” (Bachorowski, 1999) It is important to note that this is 

not always true. Deliberate, expressive modulation of  acoustic parameters not 

related to some authentically experienced emotional state is certainly possible, as 

in the cases of  acting and deception. (Ekman et al., 1976; Anolli et al., 1997) The 

composition of  music o!ers an analogous circumstance; a work may express or 

convey emotions the composer did not feel during composition, nor the 

performer during exhibition.

 Studies reviewed by Scherer (2003) of  how emotion is encoded into 

speech examined recordings of  people in emotionally trying situations, subjects 

under the influence of  emotion-altering psychoactive drugs, subjects who had 

undergone a battery of  laboratory procedures designed to induce emotion, and 

actors simulating emotional states. Findings across these studies were consistent, 
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showing a stable set of  acoustic features associated with each emotion studied. 

For example, anger was associated with increases in intensity, speed, the mean 

value of  formant 0 (F0), and descending sentence contours; fear with increases in 

intensity, speed, indeterminate F0 range, and indeterminate contour; sadness 

with decreased intensity, speed, F0 mean and range, and falling contours; joy 

with increased intensity, speed, and F0 mean and range. It is significant that all 

of  these acoustic parameters have equivalents in music.

2.2.3 Emotion recognition in human movement

Like music and speech, bodily movement can act as a conduit for the expression 

of  emotion. The standard practice for capture and analysis of  human movement 

in isolation is the point-light model, where small lights are attached to the joints 

of  actors who are filmed moving in a room (Johansson, 1973). Viewing the lights, 

and not the body attached to them, provides a way to observe the movement of  a 

person isolated from anything which could complicate interpretation, such as 

facial expression. While viewing point-light movement, people are able to 

identify such attributes as gender (Kozlowski and Cutting, 1977), vulnerability 

(Gunns et al., 2002), and emotion (Atkinson et al., 2004; Makeig, 2001; Pollick et 

al., 2001). Emotion may be perceived in point-light motion even when emotional 

expression is not the primary goal of  the actor. (Pollick et al., 2001) Unlike 

research into music and speech, point-light motion studies tend not to address 

the relationship between parameterization of  the stimuli and subjects' 

categorical judgments. This is probably because complex point-light motion does 

not have any intuitive or obvious parameterization, leading most researchers to 

favor machine learning analyses. These analyses yield dimensions on which 

automated classification of  emotional movement is possible, but which do not 

necessarily have any relationship to human perception. Below, we focus on 

11



studies which either take human perception as a starting point, or reframe the 

results of  machine learning analyses in terms of  perceptually valid categories.

 Castellano et al. (2007) used automated classification techniques to 

analyze video of  human movement with respect to emotion. They parameterized 

movement in terms of  a number of  properties related to amplitude variation and 

spectral centroid (a weighted average level of  energy), and parameterized 

emotion along the dimensions of  valence and arousal. While moderately 

successful, their model confused negative emotions with positive emotions 

having similar arousal characteristics (e.g. angry and happy), and confused 

positive emotions with other positive emotions with opposite arousal 

characteristics (e.g. happy and peaceful).

 Amaya et al. (1996) created a system for modifying captured neutral 

human movement such that it expressed various emotions. Their system focused 

on amplitude variation, corresponding with Pollick's (2001) activation 

dimension, but they suggest that other emotional changes in the movement 

(perhaps variation in Pollick's pleasantness dimension) may be related to phase 

relations between joints. Badler et al. (1999) suggest a parameterization based on 

Laban Movement Analysis (Laban, 1960) – possibly a very interesting direction 

– but do not quantify their model or demonstrate how it might be used.

 Pollick et al. (2001), using a dimensional model of  emotion based on 

“activation” and “pleasantness”, found high-activity emotions were associated 

with greater velocity, acceleration, and “jerk” in the expressive movement. 

Bernhardt and Robinson (2007) suggest a similar model. Interestingly, Pollick et 

al. (2001) found their results held with respect to the activation dimension even 

when the point-light displays were scrambled so they were no longer consistent 

with human movement. This suggests certain dynamic features present in point-
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light motion are su!cient for emotion recognition even without a visible, 

moving human body. 

2.3 Emotion as Dynamic Contour

In the modalities discussed above, each recognizable emotion is associated with a 

set of  unique features. In music, for example, happiness is associated with fast 

tempo, major mode, ascending pitch, and so on. Remarkably, there are 

similarities in parametric variation across modalities for each emotion. Sad music, 

for example, has a slow tempo, low and descending pitch, and is dissonant (Juslin 

and Laukka, 2003). Sad speech has a slow articulation rate, low fundamental 

frequency, descending pitch, and is dissonant (Scherer, 2003). Sad door-knocking 

movement is “slow and slack” (Bernhardt and Robinson, 2007) and associated 

with low velocity, acceleration, and jerk (Pollick et al., 2001). Tempo, 

articulation rate, and slowness are all variations on the theme of  speed, and 

sadness is slow whether in music, speech, or movement. This suggests the 

signifying power of  a given parameter isn't limited to one medium, but can cut 

across media and perceptual modalities. Indeed, at least for speech and music, 

this tendency toward cross-modal parametric similarity has been confirmed by 

Juslin and Laukka (2003), a meta-study of  104 papers which concludes that 

“music performance involves mainly the same emotion-specific patterns of  

acoustic cues as does vocal expression”.

 Moving forward, we review a number of  studies which consider in more 

detail mappings which act across perceptual modalities. We use the term cross-

modal mapping to refer to any reliable association of  activity in one modality to 

activity or implied activity in another. We suggest cross-modal mappings may be 

classified using the following three-level schema. First, a mapping may be either 

perceptual or cognitive. A cognitive mapping requires conscious e"ort to 
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understand; an example is looking at a chart and evaluating its meaning. In 

contrast, perceptual mappings are automatic, obligatory and unconscious: when 

we hear a fast, intense series of  footsteps, we know immediately that there is a 

person running, without engaging in any active “reading” process. Second, 

mappings may be either intuitive or learned. Intuitive mappings are present from 

birth and require no acculturation or study. A good candidate for an intuitive 

mapping between movement and music in infants is described by Phillips-Silver 

and Trainer (2007) (discussed in detail in the following section). Learned 

mappings require study or acculturation; a familiar example of  a learned 

mapping is the relationship between words in a language and their meanings. 

Provisionally, we suggest a third level. Mappings may be either isomorphic, 

analogical, or arbitrary. A mapping is isomorphic when the source and the result 

parameters occupy the same representational space. For example, slow music 

mapping to slow movement. We refer to this kind of  mapping as cross-modal 

parametric isomorphism. Conversely, a mapping is analogical when the source and 

result parameters occupy di!erent representational spaces which are mapped to 

one another, usually in terms of  intensity or magnitude. For example, visual 

brightness mapping to pitch height. We call this type of  mapping inter-parametric 

analogy. Finally, phenomena mapped arbitrarily may have no representational 

similarity, and are typically associated by rote memorization. Although the three 

levels of  this schema are conceptually independent, there are correlations 

between levels; for example, arbitrary mappings are always learned.

 We suggest that to recognize emotion in music, speech, or movement is, in 

part, to compare the dynamic contour of  a stimulus via cross-modal mapping to 

an internal dynamic model of  emotion. The cross-modal mappings implicated in 

this process may have any of  the six properties we suggest in our classification 

schema; they may be perceptual or cognitive, intuitive or learned, and 
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isomorphic or analogical. In particular, we would like to highlight the possible 

importance of  automatic perceptual and intuitive mappings in the understanding 

of  emotion, especially insofar as that understanding appears to be a human 

universal (this is discussed at length in section 2.6). 

2.4 Cross-modal connections

How does cross-modal mapping come to be possible? What are its uses, 

tendencies, and limits? The following section is a survey of  research which, 

rather than focusing on a particular medium or modality, directly investigates 

cross-modal mapping itself.

 Film and television viewing is a commonplace scenario where the cross-

modal influence of  music plays an important role. Cohen (1993) found that 

subjects' judgments of  the a!ect of  a bouncing ball were modified by music in a 

roughly additive manner. That is, when subjects viewed a happily bouncing ball, 

playing happy music made it appear more happy, and playing sad music made it 

appear less happy. Cohen (1993) also found that when the music contained 

ascending and descending major triads, this increased perceived happiness, but 

when minor triads were played, subjects' judgments were indeterminate. Cohen 

(1993) also describes two further experiments which used more realistic musical 

and visual stimuli and achieved similar results.

 Eitan and Granot (2006) asked 95 college students to, while listening to 

music, visualize internally and then describe using a forced-choice questionnaire 

the movement of  an imaginary animated character. The musical pieces used were 

short melodies, designed in pairs such that one piece featured an increase in some 

musical parameter and the other featured a decrease, with other parameters held 

constant. Parameters varied included dynamics, pitch direction, pitch intervals, 

attack rate or inter-onset interval, motivic pace, and articulation. They found 
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changes in the music a!ected imagined motion “significantly and diversely” as 

subjects employed a variety of  music-to-motion mapping strategies. The most 

statistically significant results include increases in volume mapping to an 

approach motion or an increase in speed, decreasing volume mapping to 

descending motion or movement away from the subject, ascending pitch to 

ascending motion, descending pitch to descending motion, and decreasing inter-

onset intervals (accelerandi) mapping increases in speed and vice-versa. Eitan 

and Granot note that a number of  the mappings used by subjects were analogical 

in nature, such as ascending pitch “height” mapping to ascending position in 

imaginary space. Further, some cross-modal mappings were directionally 

asymmetrical, with musical parameter changes having a greater e!ect on 

imagined motion in one direction than the other; e.g. falling pitch mapped very 

strongly to descending motion, but the relationship of  rising pitch to ascending 

motion was weaker. All results were largely invariant with respect to the level of  

subjects' musical training, although subjects with training tended to apply 

mapping strategies more consistently.

 An earlier study by Eitan and Granot (2003) also found inter-parametric 

analogies were important for determinations of  stimulus similarity in music. 

Subjects judged musical phrases with similar parametric contours as similar to 

one another, even if  those contours were applied to di!erent parameters in each 

musical phrase. For example, phrases with accelerating tempo were judged 

similar to phrases with increasing pitch. This demonstrates subjects are able to 

perceive parametric contours as distinct from musical phrases as gestalts.

 Phillips-Silver and Trainer (2007) demonstrated the e!ect of  bodily 

movement on rhythm perception, showing that, as they put it, “how we move will 

influence what we hear”. They played rhythmically ambiguous musical phrases to 

infant subjects aged 7-months while gently bouncing the subjects in a rhythm 
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that implied either a march or a waltz. In a listening test, where the musical 

phrases were rhythmically disambiguated by the addition of  accents in either 

duple or triple meter, the subjects listened significantly longer to the rhythm 

that matched their movement. While their results didn't depend on visual 

stimulation, in their introduction they draw an interesting analogy between 

rhythmically and visually ambiguous figures. They compare their march-waltz 

phrases, which can be heard either in duple or triple meter, to Rubin's (1915) 

face-vase image, which can be seen as either a vase or two faces looking at one 

another.

 Saenz and Koch (2008) presented evidence of  perceptual (i.e. automatic 

and impenetrable) mappings in visual-audio synesthetes, a class of  subjects who 

involuntarily experience sound sensations alongside visual changes such as 

flashing lights and fast movements. Their experiment exploited a well-known 

cross-modal asymmetry: normal people are pretty good at identifying auditory 

rhythms and evaluating their similarity, and pretty bad at accomplishing the 

same with visual rhythms. To confirm reports of  visual-audio synesthesia, Saenz 

and Koch played pairs of  short rhythms to two groups of  subjects: one normal 

group, and the other a group of  synesthetes who claimed to hear visual flashes as 

auditory beeps. Half  of  the rhythm pairs were presented as audio, and the other 

half  as visual flashes. Subjects were asked to evaluate whether the two rhythms 

in each pair were the same or di!erent. Normal subjects performed well on the 

auditory task, but not the visual. The synesthetes, who claimed to hear visual 

flashes as auditory beeps, performed well in both domains. Interestingly, over the 

course of  the experiment, the synesthetes reported the synesthetic sounds they 

heard along with the visuals changed to match the real sounds played during the 

auditory tests.
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 Synesthetic connections such as the above are not mere flukes or 

irregularities, unpredictable variations from a cross-modally segregated norm, 

but in fact are widespread and thought to undergird the perceptual processes of  

normal individuals. In their excellent review of  recent research on synesthesia, 

Spector and Maurer (2009) suggest two possible developmental causes of  

synesthetic perception. According to the cross-activation theory, synesthesia is 

the result of  incomplete pruning of  synaptic connections between adjacent brain 

areas. The disinhibited feedback theory suggests synesthesia is caused by 

reentrant feedback from higher cortical areas failing to inhibit the e!ects of  

connections between primary sensory cortical areas. Spector and Maurer state 

that both of  these theories predict synesthesia would be ubiquitous among 

normal individuals in early childhood and would persist to some extent in normal 

adults.

 Groups of  synesthetes (e.g. visual-audio, word-color, etc) tend to exhibit 

the same cross-modal mappings. Some of  these mappings are based upon inter-

parametric analogy. For example, synesthetic adults who perceive auditory pitch 

as visual color tend to map pitch height to brightness, with higher pitches 

resulting in brighter colors (Spector and Maurer, 2009). This cross-modal 

interaction is su"ciently strong that their ability to discriminate pitch is 

a!ected by the luminosity of  the hearing environment. In pitch identification 

tests with a light used as a distractor, synesthetic subjects responded slower and 

less accurately if  the distractor was opposed to the synesthetic percept of  the 

pitch; i.e. shining a light at a synesthete with colored hearing interferes with 

their ability to hear correctly. (Marks, 1987, as cited by Spector and Maurer, 

2009) The mapping of  higher pitch to greater brightness also holds to some 

extent in normal adults and toddlers, suggesting that there may be a “natural 
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mapping” (what we would classify as an intuitive, perceptual mapping) between 

pitch height and brightness.

 Sound and shape are also associated. Spector and Maurer (2009) note that 

“sharp visual shapes go with words that produce a small, constricted movement 

of  the tongue and mouth (e.g., spike, point).” This is exemplified by an 

experiment where children and adults were asked to match a nonsense word (e.g. 

takete, kiki, maluma, bauba) to a 2-dimensional shape. Words like “takete” and 

“kiki” were reliably matched with jagged, spiky shapes, while words such as 

“maluma” and “bauba” were matched to more rounded, bulbous shapes (Köhler, 

1929). Spector and Maurer (2009) elaborated on these experiments, testing for 

sound-shape mappings in toddlers using a wide variety of  sounds and shapes, 

finding the association between non-rounded vowels and jagged shapes, and 

rounded vowels and rounded shapes was consistent. They also determined the 

e!ect occurred early enough in development to influence the learning of  

language. Further, the association of  rounded sounds and rounded forms, and 

sharp sounds and angular forms seems to hold across cultures. The takete/

maluma experiment was performed on 14 year-old children who spoke no 

English, but Swahili and the Bantu dialect of  Kitongwe, with similar results to 

English speaking subjects (Davis, 1969). Further, there appear to be shape 

correspondences between real, non-nonsense words which hold across language 

barriers. Koriat and Levy (1979) show that Hebrew speaking adults could match 

Chinese characters with their corresponding Hebrew word with better-than-

chance accuracy, and Berlin (1994) showed that English speakers were able to 

accurately sort Huambison words based on whether they referred to a bird or a 

fish. Ramachandran and Hubbard (2001) speculate that these phenomena “arise 

from connections between contiguous cortical areas mediating decoding of  the 

visual percept of  the nonsense shape (round or angular), the appearance of  the 
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speaker’s lips (open and round or wide and narrow), and the feeling of  saying the 

same words oneself ”, invoking the idea of  a “natural mapping.” Spector and 

Maurer (2009) continue this train of  thought, taking the cross-language results 

to suggest that this natural sound-shape mapping has significant influence on 

cross-cultural evolution of  language.2

 Spector and Maurer (2009), in a section entitled “A Common Code for 

Magnitude”, note that a great many synesthetic e!ects can be explained in terms 

of  cross-modal parametric isomorphism or parametric analogy. They suggest a 

natural predisposition to map magnitude cross-modally exists from birth, and 

posit a likely evolutionary explanation: it would leave more energy for the 

learning and working out of  arbitrary mappings not related to magnitude, which 

tend to be “individually meaningful”. Their example of  an individually 

meaningful mapping is from the timbre of  Mom's voice to her face. 

2.5 Infants

Trehub (2001) shows infants are capable of  and predisposed toward the 

recognition of  melodic and rhythmic contours as distinct from melodic gestalts. 

Infants are able to recognize melodies after transposition, and rhythms after 

phrases have been sped up or slowed down, so long as the relative lengths of  the 

notes remain the same. Trehub identifies melodic contour as the most salient 

musical feature for infant listeners, and references studies (Fernald, 1991; 
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Fernald et al., 1987; Papoušek, 1992; and Lewis, 1951)  which suggest melodic 

contour may also be the most salient feature of  mothers' speech to prelinguistic 

infants. When mothers speak to infants, they slip into motherese or infant-directed 

speech, which is marked by increased pitch and dramatically exaggerated melodic 

contour. The melodic exaggeration of  infant-directed speech occurs in all 

cultures (Trehub, 2000). Trehub (2001) notes that infant-directed singing is 

distinguished from typical singing styles by increased pitch (although not quite 

as high as infant-directed speech), slow tempo, and slurred articulation of  words. 

The functions of  infant-directed speech and singing seem to be to capture 

attention, moderate arousal, and develop the emotional bond between mother 

and infant.

 The contour-a"ect relationship implicated in infant-directed speech is of  a 

di"erent kind than the mappings discussed above: there is no evidence that 

infants listening to infant-directed singing or motherese recognize them as 

representing anything. Because pre-linguistic infants are unable to explicitly 

relate a narrative of  their experiences, it would be di#cult to design an 

experiment which would provide satisfactory evidence that representation was at 

play. Nevertheless, that these modes of  communication evoke a"ective states 

suggests the fundamental relationship between contour and a"ect exists prior to 

acculturation.3

 Sa"ran et al. (1999 and 2008) examine the language learning process in 

infants. They note that “languages exemplify exactly those structures that 

humans are best able to learn”, suggesting “at least some aspects of  structure 

may emerge from constraints imposed by learning itself ”. In addition to being a 

possible bedrock on which more explicitly representational contour-emotion 

21

3 Treheb (2000) and Dissanayake (2000) suggest a number of  evolutionary functions this 
relationship might serve.



mappings may develop, we conjecture that contour-a!ect associations may be 

beneficial to the language learning process, and therefore may in turn broadly 

a!ect the development of  language on a global scale. This would go some lengths 

toward explaining some of  the inter-language e!ects described in the previous 

section. This is also probably a two-way relationship: listening to ambient adult-

directed speaking influences the contour of  a!ective expressions on the part of  

the infant. Mampe et al. (2009) shows some preliminary evidence that the 

contour of  newborns' crying melodies are shaped by the contour of  their native 

language.

 Representation of  emotion as cross-modal dynamic contour recalls Stern's 

(1985) concept of  vitality a!ects or vitality contours – basically, feelings represented 

by abstract 'forms' – which he suggests are important in early communication 

between mother and child. Stern's own work leaves vitality contours vaguely 

defined and empirically impenetrable (Køppe et al., 2008). The present work may 

to some degree assist in the explication of  vitality contours as investigable 

phenomena.

2.6 Cross-cultural emotion

2.6.1 Moving past naïve universalism and relativism

What if  this entire discourse is polluted by the cultural contingency of  language 

and thought? It may be that the notion of  happiness is represented entirely 

di!erently in one culture than another; indeed, all representation of  emotion in 

music may be partially or wholly destabilized when transported across cultural 

borders. If  this is so, how can it make sense to refer to emotion in music without 

some geographic or cultural qualification, e.g. Western music, Hindustani music, 

etc.? Evidence from studies of  synesthesia suggests there are certain linguistic-
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formal associations which hold across cultures – perhaps there are musical-

emotional associations which hold as well. In this section, I discuss problems 

with what I refer to as the naïve universalist and naïve relativist positions on 

cross-cultural emotion in music, present evidence from the literature that there 

are cross-culturally valid musical-emotional associations, and discuss how these 

associations neither exclude genuine di!erence between cultures, nor imply any 

universal musical systems (i.e. no “universal language” of  music).

 Music, as understood by what I will call the naïve universalist position, 

may be superficially di!erent in one culture or another, but has some common 

core which all people experience the same way. The explanation for this shared 

experience is the shared structure of  the human body: everybody's body works 

more or less the same way; we all have ears and a brain. Universal musical 

experiences are the result of  an interaction between the physical properties of  a 

sound and the structures of  our sense organs. Authors taking this approach tend 

to conflate feelings with perceptual experiences with physical phenomena. If  we 

experience music as having a feeling (e.g. sadness), which seems to correlate with 

a percept (e.g. dissonance), and we have got universal sameness on our mind, 

then the natural thing to do is treat either the percept, the feeling, or both as 

physical properties of  the sound.

 Plato's treatment of  music in The Republic is a paradigmatic example of  

this approach (Plato, 1992). Plato associates each musical mode with an 

emotional state, and bans from the Republic those modes which evoke emotions 

undesirable from the perspective of  government. Implied in this approach are 

two assumptions: 1) that certain collections of  pitches have certain evocative 

e!ects, and 2) that some of  these e!ects are good for culture, and some bad. Plato 

is undertaking an engineering project where music (or control over musical 

dissonance) is a means and culture is the end. His assumption that music's 
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emotional e!ects are independent of  acculturation implies the naïve universalist 

position: emotional responses to music are determined by sonic content, not 

cultural context. Significantly, this same assumption implies a theory of  music 

perception in which dissonance, and thereby emotional feeling, is thought of  as a 

physical property of  sound and not a subjective percept.

 Many later theorists have tried to make Plato's implication explicit. 

Leibniz famously quipped that “music is the pleasure the human mind 

experiences from counting without being aware that it is counting”, and 

suggested in (Leibniz, 1714) that the perception of  dissonance was related to the 

subconscious calculation of  frequency ratios. While the exact physical correlate 

of  dissonance varies from author to author, basically similar positions are held by 

Euler (1739), Stumpf  (1890), Helmholtz (1912), etc. A brief  summary of  these 

authors' theories of  dissonance perception can be found in (Lundin, 1947). All of 

these theories of  sound perception are related to cultural universalism via their 

treatment of  dissonance. If  a cue-based model of  emotion perception is assumed, 

where cues like dissonance are considered physical properties and not subjective 

percepts, then it seems reasonable to expect musical emotion to be basically 

invariant across cultures.

 The naïve universalist approach is attacked by Lundin (1947) on the basis 

that its account of  dissonance is incoherent, and by ethnomusicologists such as 

Meriam (1964) and Blacking (1965) on the basis that it fails to account for 

diversity and di!erence in the music of  non-Western cultures. Taking dissonance 

as its focus, Lundin's strategy is to drive a wedge between percepts and physical 

phenomena, suggesting our perceptual experiences are culturally contingent: the 

way we hear is a!ected by the culture in which we live. He challenges the 

physical correlates of  dissonance suggested by Euler, Helmholtz, and Stumpf: 

dissonance can't simply be the subconscious calculation of  frequency ratios, 
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where larger frequency ratios mean greater dissonance, for example, because 

some out-of-tune intervals, e.g. 99:201 Hz, are still perceived as consonant. 

There must be some process, probably conditioned by experience, which allows 

us to perceive 99:201 Hz as close enough for rock 'n' roll. According to Lundin, 

then, dissonance is not a physical phenomenon in itself, but a percept resulting 

from a “discriminative reaction” or subconscious judgment made on the basis of  

cultural experience.

 Lundin's wedge between percepts and physical properties is not unlike the 

division Scarantino establishes between Folk Emotion and Explicated Emotion. 

According to Lundin, dissonance (like emotion) is whatever people say it is, and 

people in di!erent cultural contexts may well say di!erent things. The 

contrasting approaches of  Leibniz et al. are attempts to explicate a theoretical 

construct called “dissonance” which could be scientifically useful, but may not 

line up with ordinary language use. Again assuming a cue-based model of  

emotion perception, but where cues such as dissonance are culturally 

conditioned judgments, one would expect to see dramatic variations in how 

di!erent cultures express emotion in music.

 Naïve relativism so expressed disallows any crosstalk between folk and 

explicated understandings of  musical features, and any interaction between the 

physical or biological and the cultural. This approach is exemplified by Meriam 

(1964) and much of  Blacking's early work on the music of  the Venda, a people 

living in the Transvaal in northern South Africa (e.g. Blacking, 1965). For these 

authors, culture is the supreme and perhaps single factor constitutive of  musical 

form: “Every piece of  music has its own inherent logic, as the creation of  an 

individual reared in a particular cultural background, and in terms of  this there 

is ultimately only one explanation of  its structure and meaning.” (Blacking, 1973 

as quoted by Agawu, 1997) For insights into the structure of  music, Blacking 
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looks toward relationships with dance, language, and social organization rather 

than any sort of  biological predisposition. The relativist approach is skeptical of  

any claim that music from one cultural context is similar to music from another. 

Superficial similarities may be entirely coincidental. While, to Western ears, it 

may seem that some culturally and geographically separate groups utilize the 

same musical material, the cultural contexts and organizational principles at play 

may be entirely di!erent. Only deep anthropological study of  culture can shed 

light on how music is heard.

 While o!ering obvious benefits (not the least of  which is avoiding the 

traps of  naïve universalism suggested above), the drawbacks of  this position are 

substantial. If  musical cultures are fundamentally incommensurable with one 

another, what are we to make of  certain striking similarities? Without making 

cross-cultural comparisons, how are we to undertake analysis of  musical cultures 

which o!er no internal analytic vocabulary? As Lundin (1947) pokes holes in the 

universalist position by undermining too-tightly explicated definitions of  

dissonance, Kolinski (1967) challenges the naïve relativist view to account for 

some striking empirical observations. Taking the universality of  the human vocal 

apparatus as a starting point, he asks “1) what causes the singer to select certain 

tones out of  this pitch continuum and to organize them into coherent structures; 

and 2) why similar patterns of  tonal construction can be found in widely 

separated areas and in strongly contrasting cultures”. He goes on to suggest 

octave equivalence (that is, the recognition of  pitches with frequencies related 

by an approximately 2:1 ratio as being members of  a pitch class) as a musical 

universal, as well as the presence of  fifths and other small frequency ratios, and 

categorical discrimination of  pitches. Evidence of  the universality of  these 

features is o!ered in Kolinski (1967), Trehub (2000), McDermott & Hauser 

(2005), and Nettl (1956, 1983).
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 Kolinski's (1967) approach to this evidence suggests a softening of  both 

the relativist and universalist positions such that both nature and culture are 

allowed influence. This view is a!orded by the identification of  very simple 

perceptual universals, such as octave equivalence, as phenomena on which 

complex notions such as dissonance or musical scales must supervene. After 

being faced with evidence of  universality, Blacking (1995) o!ered the following 

instructive approach: “I suggest that an accurate and comprehensive description 

of  a composer's cognitive system will provide the most fundamental and 

powerful explanation of  the patterns that the music takes. 'Cognitive system' 

includes, of  course, all cerebral activity involved in motor coordination, feelings, 

and cultural experiences, as well as the composer's social, intellectual, and 

musical activities. Even if  we regard them solely as 'sonic objects,' the notes of  a 

piece of  music are the products of  cognitive processes.” The solution is not to 

clarify a transcendental boundary between biology and culture, but to 

acknowledge that they form a coupled system, with each having an influence on 

the other.

 We follow this moderated relativist approach in our reliance on folk 

terminology and our grounding of  terms such as “dissonance” in perceptual 

studies instead of  theory. As we understand them, culturally conditioned ideas 

such as dissonance do not refer to a single physical phenomenon, but a package of 

loosely linked properties such as frequency ratio characteristics, loudness, 

context of  presentation, timbre, and so on. Learning what “dissonance” means is 

associating this set of  properties with their proper name as situated within a 

cultural context. Some of  these properties are themselves thorny, densely packed 

cultural terms – “timbre”, for example, has no obvious physical correlate and 

myriad uses. Other properties may be basic to the human perceptual apparatus. 

For example, categorical pitch perception, while not being a su"cient condition 
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for a cultural understanding of  dissonance, is probably universal, and ideas like 

dissonance probably depend upon it. Once the idea is learned, the collection of  

properties is perceived as the identifying term, e.g. a tone at a high volume, with 

a harsh timbre, a high-numbered frequency ratio, and in a certain cultural 

context is perceived as a dissonance. At the same time, activation of  the idea may 

also trigger reflection upon the interaction between the cultural context and the 

set of  distinguishable properties available to the sensory apparatus, which may in 

turn inform or update what the idea means. This feedback loop between 

reflection and perception allows for the presence of  cross-cultural universals, but 

packed into culturally relative terms in di!erent combinations and degrees. It 

also allows for intercultural di!erence, as well as the slippage of  meaning over 

time. This approach has additional implications for our plans to test our research 

cross-culturally, outlined in section 3.7.

2.6.2 Evidence for cross-cultural music-emotion mappings

Ekman's classic studies (Ekman et al., 1969; 1971) demonstrated consistent 

emotion recognition in facial expressions in numerous literate and preliterate 

cultures, some of  which had minimal contact with Westerners prior to the 

experiment. This finding was the first positive evidence that emotions are 

construed and expressed similarly across cultural boundaries. Scherer (2003) 

extended this line of  study beyond facial expression, finding that vocal 

expressions of  emotion are also recognized with better than chance accuracy 

across cultures. This and other findings from Scherer et al. (2001) are interpreted 

by the authors “as evidence for the existence of  universal inference rules from 

vocal characteristics to specific emotions across cultures”. (Scherer, 2003) Sauter 

et al. (2010) added to these findings, showing that nonverbal emotional 

vocalizations were bidirectionally recognizable between Western participants in 
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their study and culturally isolated Namibian villagers. The similarities and 

correspondences between musical and linguistic expressions of  emotion 

addressed above suggest a concerted study of  cross-cultural musical expression. 

Some preliminary steps are summarized below.

 Balkwill and Thompson (1999) played selections of  Kyrgyz, Hindustani, 

and Navajo music to Western subjects in order to compare their assessment of  

the music's emotional content with the music's cultural-emotional association. 

For an initial pilot experiment, they used a model of  emotion limited to separate 

ratings of  joy and sadness. They found the Western listeners assigned higher joy 

scores to music considered joyful in all three traditions, and higher sad scores to 

music traditionally considered sad. They also found that the joy rankings were 

positively correlated with the tempo of  the music, while the sadness rankings 

were negatively correlated. These results were followed by a more in-depth 

study of  emotion recognition by Westerners in Hindustani music, where the 

emotional palette was expanded to include anger and peacefulness, and the 

tempo, melodic complexity, rhythmic complexity, pitch range, and timbre of  the 

music were analyzed to determine how each of  these musical parameters 

contributed to emotion recognition. They found that Western listeners correctly 

rated the emotions of  the ragas in every case except for peace, which was 

confused with sadness. They found joy was correlated with tempo and melodic 

complexity, sadness was correlated with melodic complexity, but negatively 

correlated with tempo, anger was correlated with sharp timbre, and peace was 

negatively correlated with rhythmic complexity.

 Fritz et al. (2009) present the most compelling evidence for cross-cultural 

validity music-emotion mappings. Their subject population consisted of  twenty-

one members of  the Mafa ethnic group in Northern Cameroon who, prior to the 

study, had never been exposed to Western music. Subjects were played musical 
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examples meant to convey happiness, sadness, and fear, ranking each example by 

placing a slider on a continuum between a cartoon happy face and a cartoon 

grimace. The Mafa subjects were able to correctly assess the emotional content 

of  each musical example, although compared to a German control group, the 

Mafa responses were less extreme. After the recordings were digitally altered 

such that formerly consonant harmonies became dissonant, the ratings of  the 

Mafa group became considerably more negative. While this study is emotionally 

narrow and limited to only two cultures, the results are compelling enough to 

lend weight to the notion that dynamic emotional signs are understood similarly 

regardless of  acculturation.

 If  musical signs for emotion are understood cross culturally, then those 

signs cannot be pointing toward concepts which are entirely culturally 

contingent. There must be some universally occurring thing to which emotional 

musical signs refer. Ekman (1999) suggests emotions are “distinctive universal 

signals” for “inform[ing]  conspecifics, without choice or consideration, about 

what is occurring: inside the person (plans, memories, physiological changes), 

what most likely occurred before to bring about that expression (antecedents), 

and what is most likely to occur next (immediate consequences, regulatory 

attempts, coping)”. All kinds of  actions are packed into emotions: those which 

lead up to the emotional experience, those which are a part of  or coincide with 

its occurrence, and those to which it is an antecedent. Following this 

observation, it seems likely that cross-cultural emotions are accompanied by 

predictable patterns of  behavior. Examples include fighting or yelling when 

angry, receding or crying when sad, or moving slowly and becoming still when 

peaceful. We would like to suggest that emotional signs in music bear an iconic 

relationship to these and similar activities, including both physical actions and 

modes of  speaking a!ected by emotional state. There is some inconclusive 
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evidence that emotions and actions may be associated in a way which would 

support this semiotic relationship. In addition to the studies of  movement and 

gesture summarized above, Ekman (1999) summarizes studies which indicate 

emotions may be reliably accompanied by certain physiological changes which 

could predispose subjects to certain activities. None of  the studies summarized 

o!er evidence as to whether these predispositions are innate or the result of  

acculturation, so this is still an open question. However, if  evidence of  cross-

cultural validity of  emotional signs in music is shown to be conclusive, that 

would strongly suggest that emotional predispositions to behavioral action are 

cross-cultural as well.

2.7 Where do we go from here?

Evidence from the literature shows consistent mappings between music, motion, 

and emotion which appear to be determined by cross-modal parametric 

isomorphisms and inter-parametric analogies. However, this evidence for cross-

modal mappings is mostly implicit: most of  the studies surveyed focus on 

examples of  emotion-signifying stimuli in a single modality which are either 

created prior to the experiment or by actors. Subjects typically assess the 

emotionality of  the stimulus, and then the experimenters parameterize and 

analyze those stimuli with respect to subjects' judgments. The primary problem 

with this approach is the segregation of  di!erent modalities. Subjects only assess 

stimuli in a single modality at a time, and researchers typically analyze each 

modality separately, so relationships between modalities are rarely described in 

detail.4 In the case of  music, this problem is compounded by a willingness to take 

music-theoretical terminology (especially “major” and “minor”) as basic aspects 
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of  musical experience, obscuring the possibility that lower-level parameters 

could be at play. Finally, the use of  human actors for producing stimuli imposes 

severe limits on the number of  stimuli generated and the extent to which those 

stimuli reflect the full breadth of  expressive possibility.

3 A behavioral experiment

Our experiment avoids the methodological issues described above by inverting 

the standard create stimuli, then get subject assessments, then analyze process. 

We developed a novel experimental paradigm where subjects are presented with a 

computer program which allows them to manipulate slider bars corresponding to 

parameters in a statistical model generating dynamic contours. The output of  

this model is fed to computer programs which  simultaneously create stimuli in 

two di!erent modalities – music and motion – in real time, with similar dynamic 

contours. Two groups of  subjects, one for each modality, use the model as an 

authoring tool, creating stimuli which they think best express a set of  emotions. 

Afterward, the results from the two groups are compared. If  the same statistical 

properties of  dynamic contour are similarly implicated in emotion recognition in 

both music and motion, then e!ect of  class (emotion) on slider position should 

be than the e!ect of  modality (music, motion). In addition to avoiding the 

shortcomings described above by providing precisely (in fact, programmatically) 

explicated definitions of  terminology, this approach also results in the 

production of  a generative model for creating numerous statistically and 

emotionally similar stimuli.
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3.1 A notable methodological precedent

In addition to the literature described above, there is one study with which the 

present work shares a certain kinship. Its nearest methodological neighbor is 

Scherer and Oshinsky (1977), which is the first study of  musical emotion to use 

stimuli generated based on regular sampling of  a musical parametric space. 

Scherer and Oshinsky used a Moog synthesizer to create eight-tone melodies 

based on the division of  musical space into various parameters, each of  which 

was further divided into levels of  intensity. Because the melodies were produced 

manually, they were limited in terms of  the resolution of  their divisions, which 

in turn limited the number of  stimuli produced (164 in total, which were 

narrowed down to a smaller group for testing). While this is quite a large 

selection relative to other contemporaneous studies, the present work expands 

this further by automating the melody generation process and handing control of 

the parameter settings to the subjects, enabling fine-grained exploration of  a 

very large parametric space.

3.2 Parameterization and emotion choices

Based on a review of  the literature outlined above, we selected five emotions on 

which to focus our research. We chose emotions likely to be recognizable in both 

music and simple movement. These emotions were represented in our study by 

five-word clusters, following Hevner (1935). Each cluster is topped by a single 

word we decided was the clearest and simplest expression of  the emotion-group. 

These top words are: “happy”, “sad”, “angry”, “scared”, and “peaceful”.

 We then selected a group of  parameters implying a model we thought 

could represent simple music and biological motion. This model was the basis of  

the stimulus-generating computer program described in the following section. By 
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“simple” music and biological motion, we mean to indicate our goal was not 

realism, but mere recognizability; the musical output of  our program is not 

going to sit alongside Mozart in the canon, but should be recognizable as “happy 

music”, “sad music”, etc. Likewise, the program does not generate realistic 

human movement, but instead bounces a ball around, the motion of  which 

should be recognizable as “happy”, “sad”, and so on.5 A combination of  evidence 

from the literature and our intuition suggested the parameters of  tempo or inter-

onset interval (measured in beats per minute), jitter (standard deviation from 

the mean tempo), musical consonance/visual spikiness, tendency to make big 

movements vs. small movements, and tendency to move upward or downward. 

Each of  these parameters are isomorphic in both music and motion, with the 

exception of  consonance/spikiness. For consonance/spikiness we implemented a 

mapping from a simple model of  musical consonance to the visual spikiness of  

the moving figure.

3.3 The model

The program for the behavioral experiment was written in Max/MSP (Puckette, 

1991; Zicarelli, 1998), JavaScript, and Processing (Reas & Fry, 2006).

 Subjects were presented an interface with slider-bars corresponding to the 

five dimensions of  our statistical model: tempo, jitter, or scale choice (also 

referred to as dissonance or consonance), step size, and step direction. We 

selected these parameters based on intuition and experience, augmented by a 

review of  the literature, identifying each parameter as either crucial for 

emotional expression or as low-level ground upon which higher-level ideas might 
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depend (dissonance, for example, depends upon scale choice). The five sliders 

controlled parametric values fed to an algorithm which probabilistically moved 

the position of  a marker around a discrete number-line in real time. We will refer 

to the movements of  this marker as a path. The position of  the marker at each 

step in the generated path was mapped to either music or animated movement.

 The number-line traversal algorithm can be split into two parts. The first 

part, called the metronome, controlled the timing of  trigger messages sent to the 

second part, called the path generator, which kept track of  and controlled 

movement on the number line. The tempo and jitter parameters were fed to the 

metronome, and the scale choice (also referred to as consonance), step size (also 

referred to as bigsmall), and step direction (also referred to as updown) 

parameters were fed to the path generator. When the subject pressed the space 

bar on the computer keyboard, the metronome turned on, sent sixteen trigger 

messages to the path generator (variably timed as described below), and then 

turned o!. The beginnings and endings of  paths correspond to the ons and o!s of 

the metronome.

 Tempo was measured in beats-per-minute (bpm), and constrained to a 

minimum of  30bpm and a maximum of  400bpm. Jitter was expressed as a 

coe"cient of  the tempo with a range between 0 and 0.99. When jitter was set to 

0, the metronome would send out a stream of  events at evenly spaced intervals as 

specified by the tempo slider. If  the jitter slider were above zero, then specific 

per-event delay values were calculated nondeterministically as follows. 

Immediately prior to each event, a uniformly random value was chosen between 0 

and the current value of  the jitter slider. That value was multiplied by the 

period in milliseconds as specified by the tempo slider, and then the next event 

was delayed by a number of  milliseconds equal to the result. The e!ect was that 
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as the value of  the jitter slider increased, the timing of  event onsets became less 

predictable while the mean event density remained the same.

 The path generator can be conceived of  as a “black box” with a memory 

slot which could store one number and which responded to a small set of  

messages: reset; select next number; and output next number. Whenever the path 

generator was sent the reset message, a new starting position was picked and 

stored in the memory slot (the exact value of  the starting position was 

constrained by the value of  the scale choice slider as explained below). Whenever 

the path generator was sent the select next number message, it picked a new 

number according to the constraints specified by the slider bars – first, the size 

of  the interval was selected, then the direction (up or down), then a specific 

number according to the position of  the scale choice slider. The output next 

number message caused the path generator to output the next number to the 

music and motion generators, described in section 3.4.

 When selecting a new number, the path generator first chose a step size, or 

the distance between the previous number (stored in the memory slot) and the 

next. This value was calculated nondeterministically based on the position of  the 

step size slider. The step size slider had a minimum value of  0 and a maximum 

value of  1. When choosing a step size, a uniformly random number between 0 

and 1 was generated. This number was then used as the x value in the following 

equation, where a = the value of  the step size slider:

The result r was multiplied by 4 and then rounded up to the nearest integer to 

give the step size of  the event. As the value of  the step size slider increased, the 
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likelihood of  a small step size decreased, and vice versa. If  the slider was in the 

minimum position, all the steps would be as small as possible. If  it was in the 

maximum position, all the steps would be as large as possible. If  it was in the 

middle position, there would be an equal likelihood of  all possible step sizes. 

Other positions skew the distribution one way or the the other, where higher 

values resulted in a larger average step size. Note that these step size units did 

not correspond directly to the units of  the number line; they were flexibly 

mapped to the number line as directed by the user's scale selection, described 

below.

 After the step size was chosen, the path generator determined the 

direction of  the next step: up or down. As with step size, the step direction was 

calculated nondeterministically based on the position of  the step direction slider. 

The step direction slider had a minimum value of  0 and a maximum value of  1. 

When choosing step direction, a uniformly random number between 0 and 1 was 

generated. If  that number was less than or equal to the value of  the step 

direction slider, then the next step would be downward; otherwise the next step 

would be upward.

 Finally, the number was mapped on to one of  38 unique scales. As the 

notion of  a scale is drawn from Western music theory, this decision requires some 

elaboration. In Western music theory, a collection of  pitches played 

simultaneously or in sequence may be heard as consonant or dissonant. The 

perception of  a given musical note as consonant or dissonant is not a function of  

its absolute pitch value, but of  the collection of  intervals between all pitches 

comprising the current chord or phrase. The relationship between interval size 

and dissonance is non-linear. For example, an interval of  7 half  steps, or a perfect 

fifth, is considered quite consonant, whereas an interval of  6 half  steps, or a 

tritone, is considered quite dissonant. Intervallic distance, consonance/
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dissonance, and equivalency are closely related. If  a collection of  pitch classes X 

(a pitch class set, or PC set) has the same set of  intervallic relationships as 

another PC set Y, those two PC sets will have the same degree of  consonance and 

are transpositionally identical (and in certain conditions equivalent).

 Absolute pitches also posses this property of  transpositional equivalency. 

When the frequency of  a note is doubled, it is perceived as belonging to the same 

pitch class. For example, the A key closest to the middle of  a piano has a 

fundamental frequency of  440Hz, while the A an octave higher has a fundamental 

frequency of  880Hz; both are heard as an A. Western music divides the octave 

into twelve pitch classes, called the chromatic scale, from which all other scales 

are derived. Because we wanted to investigate musical dissonance and possible 

functional analogs in the modality of  motion, our number-line scales were 

designed to be analogous to musical scales, where a number-line scale is a 5-

member subset of  the chromatic set [0,1,2,3,4,5,6,7,8,9,10,11]. There are 768 

subsets of  the chromatic set, many of  which are (in the domain of  music) 

transpositionally or inversionally equivalent. Our scale list was created by 

generating the prime forms (Forte, 1973) of  these 768 subsets, and then 

removing duplicates, yielding 38 unique scales.6 These scales were ordered by 

their aggregate dyadic consonance as defined by Huron (1994).

 The choice of  a definition of  consonance determined exclusively by pitch-

class relationships may seem at odds with our reflection-perception feedback 

model of  conceptual understanding outlined in section 2.6. However, while 

motivated by Western music theory, Huron's (1994) aggregate dyadic 

consonance is a perceptual measure. It is derived from the results of  three 

separate studies (Malmberg, 1918; Kameoka and Kuriyagawa, 1969; Hutchinson 
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and Knopo!, 1979; all as cited by Krumhansl, 1990) in which subjects were 

surveyed as to the relative dissonance of  various combinations of  notes played on 

a piano. We think that this, a measure based solely on these subjective 

judgments, in a context which closely matches that of  our experiment, is the best 

we can do to balance the need for explication imposed by computer modeling 

with our need to rely on a folk notion of  dissonance. This approach is not 

without its limits: Huron's metric is only applicable to listeners acculturated to 

Western music, and does not take into account the e!ects of  melody or pitch 

order, loudness, pitch register, or any musical parameters other than interval 

class. While this limits to some extent the generalizability of  our results, and the 

applicability of  the experiment to other cultural contexts, we believe it is 

su"cient for the present work.

 The algorithm for generating a specific path across the number line was as 

follows. The number line consisted of  the integers from 0 to 127 inclusive. When 

the algorithm began, three variables were stored. First, a starting-point o!set 

between 0 and 11 was selected uniformly at random, then an octave bias variable 

was set to 5, and a scale position variable was set to 0. The current scale class 

was determined by using the scale position variable as an index to the array of  

scale elements specified by the position of  the scale slider. For example, if  the 

current selected scale was [0, 3, 4, 7, 10] and the current scale position variable 

was 2, then the current scale class would be 4 (indices start from 0). The current 

position on the number line was given by multiplying the octave bias by 12, 

adding the starting-point o!set, and then adding the current scale class value. 

For example, if  the octave bias was 5, the starting-point o!set was 4, and the 

scale class value was 7, then the current position on the number line would be 71.
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 When the select next number message was received, an interval and note 

direction were selected as described above. If  the note direction was upward, 

then the new scale position value was given by the following:

(current scale position + new interval value) % 5

If  the note direction was downward, then the new scale position value was given 

by:

5 + (current scale position - new interval value)

 Either of  these conditions may imply a modular “wrapping around” the 

set of  possible values (0 to 4). If  this is the case, then the current octave variable 

is either incremented by 1 in the case of  an upward interval, or decremented by 1 

in the case of  a downward interval. If  a step in the path would move the position 

on the number line outside of  the allowed range, 12 would be either added to or 

subtracted from the new position. This to some extent distorted the contour of  

paths with very large step sizes which had an extreme tendency toward either 

upward or downward movement.

3.4 The mappings

The subjects were divided into two groups. For the first group, number-line 

values were mapped to musical notes, and for the second group, number-line 

values were mapped to animated movement.
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3.4.1 Music

Our mapping from movement across a number-line to Western music was 

straightforward, as its most significant modality-specific features were taken care 

of  by the very design of  the number-line algorithm. The division of  pitches into 

pitch-classes and scales is accounted for by the scale-class and scale selection 

system used by the algorithm, as is the modulo 12 equivalency of  pitch-classes. 

Each number was mapped to a specific pitch which was sounded as the algorithm 

selects the number. The number 60 was mapped to middle-C, or C4. Movement 

of  a distance of  1 on the number line corresponded to a pitch change of  a half-

step, with higher numbers being higher in pitch. For example, 40 maps to E2, 0 

maps to A0, and 127 maps to G9. This matches the mapping described by the 

MIDI Manufacturers Association (1996). Notes were triggered via MIDI and 

played on the grand piano instrument included with Apple GarageBand.

 A piano timbre was picked because of  the instrument's ubiquity in 

Western music and relative emotional neutrality. Unlike the violin, guitar, 

clarinet, etc., the piano appears in almost every genre of  Western music, and is 

routinely used to express the full spectrum of  musical emotions. The violin or 

cello, for example, could for some listeners carry a connotation of  sadness. 

Further, the piano does not necessarily carry any extra-musical connotations – 

unlike, for example, a pure sine tone, which is often used to signify the future or 

advanced technology. This is not to suggest the piano provides a truly neutral 

timbre, or that it cannot be used to point in an extra-musical direction, but 

simply to say that no emotional information or extra-musical context may be 

reliably inferred from its use.
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3.4.2 Motion

Mapping from movement across a number-line to animated movement was less 

straightforward. Our animated character was a red ellipsoid egg with cubic 

“eyes”. It sat atop a rectangular dark grey “floor” on a light grey background. An 

ellipsoid was chosen because it can be seen as rotating around a center. The 

addition of  eyes was intended to engage cognitive processes related to the 

perception of  biological motion. We wanted our subjects to perceive the egg as 

having its own subjectivity; that it could be capable of  communicating or 

experiencing happiness, sadness, etc. The movement of  our character (henceforth 

referred to as “the Egg”) was limited to bouncing up and down, rotating forward 

and backward, and modulating the spikiness of  its surface. Technical details 

follow.

 The Egg was rendered using OpenGL (Rost, 2004) and programmed using 

Processing (Reas & Fry, 2006). The Egg was drawn as a red 3-dimensional sphere 

composed of  a limited number of  triangular faces which were transformed into 

an ellipsoid by scaling its y-axis by a factor of  1.3. The Egg was positioned such 

that it appeared to be resting on a rectangular floor beneath it. Its base appeared 

to flatten where it made contact with the floor. The total visible height of  the 

Egg when it is above the floor was 176 pixels; this was reduced to 168 pixels when 

the Egg was making contact with the floor. Its eyes were small white cubes 

located about 23% downward from the top of  the ellipsoid. The Egg and the floor 

are rotated about the y-axis such that it appeared the Egg was looking 

somewhere to the left of  the viewer. 
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Every time the current position on the number line changed, the Egg bounces. A 

bounce is the translation of  the Egg to a position somewhere above its resting 

position and back down again. Bounce duration was equal to 93% of  the current 

period of  the metronome. The 7% reduction was intended to create a perceptible 

“landing” between each bounce. Bounce height was determined by the di!erence 

between the current position on the number line and the previous position. A 

di!erence of  1 resulted in a bounce height of  20 pixels. Each additional addition 

of  1 to the di!erence increased the bounce height by 13.33 pixels, e.g. a 

di!erence of  5 would result in a bounce height of  73.33 pixels. The Egg reached 

its translational apex when the bounce was 50% complete. The arc of  the bounce 

followed the first half  of  a sine curve, i.e. at any point during the bounce, the 

current vertical translation of  the Egg relative to its original position was given 

by the formula:

Where p is a decimal value between 0 and 1 representing the percentage of  the 

bounce completed and h is the total height of  the bounce.

 The Egg would rotate, leaning forward or backward, depending on the 

current number line value. High values caused the Egg to lean backward, such 

that it appeared to look upward, and low values caused the Egg to lean forward 

or look down. When the current value of  the number line was 60, the Egg's angle 

of  rotation was 0 degrees. An increase of  1 on the number line decreased the 

Egg's angle of  rotation by 1 degree; conversely, a decrease of  1 on the number 

line increased the Egg's angle of  rotation by 1 degree. For example, if  the current 

number-line value were 20, the Egg's angle of  rotation would be 40 degrees. If  
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the current number-line value were 90, the Egg's angle of  rotation would be -30 

degrees.

 The Egg could also be more or less “spiky”. The amplitude of  the spikes, 

or perturbations of  the Egg's surface, were analogically mapped to musical 

dissonance. The visual e!ect was achieved by adding noise to the x, y, and z 

coordinates of  each vertex in the set of  triangles comprising the Egg. Whenever a 

new position on the number-line was chosen, the aggregate dyadic consonance 

(Huron, 1994) of  the interval formed by the new position and the previous 

position was calculated. The maximum aggregate dyadic consonance was 0.8, the 

minimum was -1.428. The results were scaled such that when the consonance 

value was 0.8, the spikiness value was 0, and when the consonance value was 

-1.428, the spikiness value was 0.2. Changes in consonance of  0.01 resulted in a 

change of  0.008977 to the spikiness value. For each vertex on the Egg's surface, 

spikiness o!sets for each of  the three axes were calculated. Each spikiness o!set 

was a number chosen uniformly at random between -1 and 1, which was then 

multiplied by the Egg's original spherical radius times the current spikiness 

value.

3.5 Experimental Method

Subjects were divided into two groups, the Motion group and the Music group. 

The same program was used for both groups of  subjects, except that the Motion 

group only saw the motion output, whereas the Music group only heard the 

music. The program was explained to the subjects as follows: whenever the space 

bar was pressed, a musical phrase would begin to play or the ball would begin to 

bounce. While the music was playing or ball was bouncing, a visual indicator 

would appear on the screen, and additional presses of  the space bar would have 

no e!ect. Moving the slider bars immediately caused the music or the way the 

45



ball bounced to change. Subjects were given an opportunity to play with the 

slider bars in an open-ended way for as long as they liked. When they were ready, 

they were instructed to press a button on the screen which displayed the 

“emotional targets” (explained below) and began the experimental task.

 Five emotional targets were displayed on the screen. Each target consisted 

of  a group of  five emotional words, a save button, and a load button. The targets 

appear in figure 2, a screenshot of  the user interface.

Pressing the save button for a group stored the slider bar positions in memory. 

Pressing the load button for a group restored the slider bars to the position saved 

for that group. Subjects were instructed to save slider bar settings corresponding 

to each emotional group. No group order was mandated, that is, subjects were 

free to work on hitting each emotional target in whatever order they chose, and 

they were instructed to load and revise settings as changes occurred to them. 

Each saved slider bar setting was meant to make sense with respect to the other 

saved settings, i.e. the subject was told that their “happy” settings should make 
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sense relative to their “sad” settings, and so forth. The di!erence between 

recognized and evoked emotion was emphasized: subjects were told that their 

task was to make the emotions recognizable to an observer but that they should 

not worry about trying to make the clips emotionally evocative. There was no 

time limit imposed on the experiment; when subjects saved slider settings for all 

five emotional targets and were satisfied with the results, they pressed a button 

which finished the experiment.

3.6 Results

3.6.1 Multi-way ANOVA/GLM

Unless otherwise noted, Mauchly's Test of  Sphericity was significant for all 

within subject e!ects. To compensate, all results listed below have Greenhouse-

Geisser correction applied. Emotion had the largest e!ect on slider position (F

(2.97, 142.44) = 185.56, p < 0.001). The partial Eta2 was .79, which means that 

Emotion by itself  accounted for 79% of  the overall (e!ect+error) variance. This 

main e!ect of  emotion was qualified by an Emotion x Feature interaction 

indicating that di!erent emotions required di!erent configurations of  dynamic 

features (F(4.81, 230.73) = 112.90, p < 0.001; partial Eta2 = .70). Importantly, 

while there was a significant main e!ect of  Modality (F(1,48) = 4.66, p < .05) 

this e!ect was small (partial Eta2 = .09) and did not interact with Emotion 

(Emotion x Modality: F(2.97, 142.44) = .97, p >.4; partial Eta2 = .02). The 

three way interaction between Feature, Emotion, and Modality was significant, 

albeit modest (F(4.81, 230.73) = 4.50, p < 0.001; partial Eta2 = .09).

 The three-way interaction can be read as a measure of  variance per 

parameter explained by the combination of  emotion and modality. That is, a 

rough measure of  the extent to which the statistical codes for emotion in our 

47



model di!er between music and motion. This measure combines those di!erences 

which are a function of  the human perceptual system with di!erences caused by 

limitations and inaccuracies in our model. Its modest size suggests, 

unsurprisingly, that the domains of  music and motion are to an extent 

fundamentally di!erent, but also that they are su"ciently similar, and our 

models su"ciently accurate, for the purposes of  our experiment.

3.6.2 Analyses by emotion class

The following sections describe the data for each emotion in detail. Means with 

standard deviations are provided for each slider bar and task combination, inter-

parametric correlations with magnitudes > 0.3 are discussed, and linear 

discriminant analysis (LDA) is used to assess which parameters best distinguish 

data points in each emotion class from all out-of-class data points. To describe 

the results of  LDA, we provide the proportion of  the linear combination of  

predictor variables which describe the rotation of  the discriminant for each 

parameter. This is a relatively abstract measure; su"ce it to say that high values 

indicate the given parameter is important for discriminating the current emotion 

from the others. Parameters represented in the model as values between 0 and 1 

are scaled to between 0 and 100. The possible ranges of  each parameter are as 

follows: BPM, 30-400; jitter, 0-99; consonance, 0-37; bigsmall, 0-100; updown, 

0-100.
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3.6.2.1 Angry

bpm jitter consonance bigsmall updown

Mean all 331.00 53.70 8.00 67.92 76.94

SD all 73.02 34.53 11.44 33.24 18.62

Mean Music 340.04 42.72 11.84 65.44 75.36

SD Music 81.10 35.83 12.83 29.07 20.24

Mean Motion 321.96 64.68 4.16 70.40 78.52

SD Motion 64.33 29.99 8.46 37.39 17.12

Music and 
motion

Consonance, updown r = -0.39, p<0.005, 95% CI -0.6 to -0.13Music and 
motion BPM, updown r = -0.32, p<0.025, 95% CI -0.55 to -0.04

Music Consonance, updown r = -0.39, p<0.05, 95% CI -0.68 to 0

BPM, updown r = -0.33, p<0.1, 95% CI -0.64 to 0.07

Jitter, bigsmall r = -0.43, p<0.03, 95% CI -0.7 to -0.04

Motion Consonance, updown r = -0.39, p<0.052, 95% CI -0.68 to 0

Consonance, bigsmall r = -0.45, p<0.023, 95% CI -0.72 to -0.07
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music and motion music motion

bpm 0.022 0.036 0.009

jitter 0.006 0.020 0.002

consonance 0.577 0.265 0.779

bigsmall 0.040 0.045 0.031

updown 0.355 0.634 0.179

Music and motion settings for angry were very similar. Anger is quick, jittery, 

dissonant, takes large steps, and tends to move rather steeply downward. 

Although BPM values for motion had a lower standard deviation than music, a 

majority of  music subjects pushed the BPM slider to its highest possible value. 

The minimum BPM value for angry music was 136, whereas the minimum for 

angry music was 269. Angry motion also tended to be more jittery, with a mean 

value of  61.13, vs. 33.6 for music. 

 In both angry music and angry motion, consonance and updown were 

negatively correlated, meaning that as subjects steepened the downward 

trajectory of  the path, they also decreased the consonance. In music alone, BPM 

and updown as well as jitter and bigsmall were negatively correlated, meaning 

that as subjects steepened the downward trajectory of  the path, they also slowed 

down the tempo, and as they chose to increase the step size, they also chose to 

decrease the jitter. In motion alone, consonance and bigsmall were negatively 

correlated, meaning that as subjects decreased the consonance (and so increased 

the spikiness of  the Egg), they also decreased the step size. The jitter-bigsmall 

correlation in music and the consonance-bigsmall correlation in motion are of  

similar size (-0.43 and -0.45) and in the same direction; also, within the dataset 

as a whole (both tasks for all emotions), jitter and consonance are negatively 

50

Table 4: Angry: LDA results



correlated (a discussion of  the whole dataset correlations is below). This leads us 

to hypothesize that motion subjects' spikiness choices and music subjects' 

consonance choices are similarly motivated.

 Angry data points are best discriminated from other data points by 

assessing their position on the consonance-updown plane. Consonance is the 

most important parameter (0.577), followed by updown (0.355). LDA results for 

angry motion alone are similar but exaggerated. For angry music alone the result 

is di!erent: consonance and updown are still the most important dimensions for 

distinguishing angry from the other emotions, updown is more important 

(0.634) than consonance (0.265).

3.6.2.2 Happy

bpm jitter consonance bigsmall updown

Mean all 280.12 33.24 32.00 49.36 35.56

SD all 87.55 32.56 8.40 34.43 16.93

Mean Mu 321.84 43.08 31.24 32.16 31.92

SD Mu 59.36 32.78 8.27 30.12 15.55

Mean Mo 238.40 23.40 32.76 66.56 39.20

SD Mo 92.19 29.80 8.64 29.94 17.77
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Music and 
motion

BPM, jitter r = 0.51, p<0.0001, 95% CI 0.27 to 0.69Music and 
motion BPM, bigsmall r = -0.33, p<0.02, 95% CI -0.56 to -0.06

Music BPM, bigsmall r = -0.36, p<0.08, 95% CI -0.66 to 0.04

Updown, bigsmall r = 0.4, p< 0.043, 95% CI 0.02 to 0.69

Motion BPM, jitter r = 0.62, p<0.002, 95% CI 0.29 to 0.81

  

music and motion music motion

bpm 0.007 0.013 0.003

jitter 0.000 0.002 0.001

consonance 0.925 0.801 0.913

bigsmall 0.008 0.020 0.071

updown 0.060 0.164 0.011

Happy is fast, slightly jittery, consonant, has medium step size, and tends 

moderately upward. There are a number of  significant di!erences between happy 

music and happy motion. Happy music tends to be faster. The BPM value for 

happy motion has a large standard deviation and a relatively low minimum value 

of  98; it's possible that motion may appear happy so long as it is above a certain 

threshold. Happy music tends to be more jittery than motion. 8 of  15 happy 

music subjects chose jitter values of  26 or below, while the rest chose values 

between 48 and 95. It may be that the high-jitter subjects were trying to create 

more elaborate rhythms.
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Table 6: Happy: correlations with magnitude greater than 0.3

Table 7: Happy: LDA results



 In happy music and motion considered together, BPM and bigsmall are 

negatively correlated, meaning that as speed increases, step size decreases. This 

suggests that subjects want to achieve an increase in speed which does not also 

dramatically increase the path's angle of  upward movement. Perhaps because this 

angle of  upward movement is probably less perceptible in the motion domain 

than the music domain, this correlation is stronger in music (r = -0.36, vs. r = 

-0.13). This hypothesis is strengthened by the correlation in music of  updown 

and bigsmall (r = 0.4), demonstrating that as step size increases, the ratio of  

upward to downward movements decreases, moderating the angle of  upward 

movement in the same way as the BPM-bigsmall correlation. Across both tasks, 

BPM and jitter are relatively strongly correlated, suggesting that as tempo 

increases, more jitter is necessary to achieve the same e!ect. When only 

considering happy music and motion, this correlation is much stronger in motion 

(r = 0.62) than in music (r = 0.22). This may be because of  di!erences in 

accuracy in visual vs. auditory rhythm processing (Saenz and Koch, 2008). This 

correlation isn't unique to happiness: it holds across all emotions for both tasks 

(r = 0.45, p<5.33e-13, 95% CI 0.35 to 0.54), for just the music task (r = 0.39, 

p< 5.69e-06, 95% CI 0.23 to 0.53), and for just the motion task (r = 0.52, 

p<6.801e-10, 95% CI 0.37 to 0.63). 

 Consonance is by far the most important dimension for distinguishing 

happy music and motion data points from the other emotions. For music and 

motion together, the second most important dimension is updown (0.06), and 

updown is still more important for music on its own (0.164). For motion alone, 

however, bigsmall is more important (0.071) than updown (0.011).
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3.6.2.3 Peaceful

bpm jitter consonance bigsmall updown

Mean O 69.48 11.30 32.34 23.66 38.34

SD O 41.90 20.19 9.04 24.41 20.07

Mean Mu 77.16 12.68 29.76 24.44 41.32

SD Mu 41.51 16.48 9.70 22.83 14.26

Mean Mo 61.80 9.92 34.92 22.88 35.36

SD Mo 41.70 23.59 7.68 26.34 24.51

Music and 
motion

Bigsmall, consonance r = -0.31, p<0.026, 95% CI -0.54 to -0.04Music and 
motion Bigsmall, jitter r = 0.33, p<0.018, 95% CI 0.06 to 0.56

Consonance, jitter r = -0.49, p<0.00032, 95% CI -0.67 to -0.24

Music Consonance, jitter r = -0.32, p<0.13, 95% CI -0.63 to 0.09

Motion Bigsmall, consonance r = -0.5, p<0.012, 95% CI -0.74 to -0.12

Bigsmall, jitter r = 0.56, p<0.0036, 95% CI 0.21 to 0.78

Consonance, jitter r = -0.68, p<0.00017, 95% -0.84 to -0.39
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Table 8: Peaceful: means and standard deviations

Table 9: Peaceful: correlations with magnitude greater than 0.3



music and motion music motion

bpm 0.047 0.043 0.049

jitter 0.020 0.075 0.007

consonance 0.379 0.573 0.317

bigsmall 0.030 0.178 0.001

updown 0.523 0.132 0.626

Peacefulness has a slow or slow-medium tempo, very low jitter, is quite 

consonant, takes small steps, and tends upward. Peaceful music tends to be faster 

than peaceful motion, with a mean BPM of  73.6, within the average normal 

human heart rate range of  75 +- 2 (Mancia et al., 1983). Across both tasks, 

consonance and jitter are negatively correlated, bigsmall and jitter are positively 

correlated, and bigsmall and consonance are negatively correlated, suggesting 

that dissonance, jitter and large step size are similar insofar as they work to 

disrupt the peace. The correlation between bigsmall and jitter in peaceful music 

alone is very weak (r = 0.04); rather than suggesting a fundamental di!erence 

between the tasks, this may because the standard deviation of  jitter values in 

peaceful music is so dramatically small, i.e. jitter so e!ectively disrupts 

peacefulness that in the music task subjects eschewed it almost completely. This 

e!ect may be more extreme in music because of  increased rhythmic acuity in 

audition vs. vision (Saenz and Koch, 2008).

 Peaceful music and motion together are best distinguished from the other 

emotions by position on the consonance-updown plane, although updown 

(0.523) is more important than consonance (0.378). Peaceful motion is similar. 

For peaceful music on its own, consonance is the most important dimension 

(0.573), followed by bigsmall (0.178) and updown (0.132); position on the 
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consonance-updown plane alone is not enough to distinguish peaceful music from 

other kinds of  music, three dimensions are necessary.

3.6.2.4 Sad

bpm jitter consonance bigsmall updown

Mean O 53.74 19.44 22.66 26.28 78.30

SD O 26.80 25.43 15.22 31.40 26.84

Mean Mu 60.80 19.56 17.32 47.52 64.76

SD Mu 29.42 23.51 14.99 30.87 26.36

Mean Mo 46.68 19.32 28.00 5.04 91.84

SD Mo 22.29 27.70 13.75 10.93 19.85

Music and 
motion

Updown, bigsmall r = -0.35, p<0.013, 95% CI -0.57 to -0.08Music and 
motion Updown, consonance r = 0.38, p<0.007, 95% CI 0.11 to 0.59

Jitter, consonance r = -0.42, p<0.0022, 95% CI -0.62 to -0.16

Music Jitter, updown r = -0.36, p<0.079, 95% CI -0.66 to 0.04

Jitter, consonance r = -0.47, p<0.018, 95% CI -0.73 to -0.09

Motion Updown, bigsmall r = -0.63, p<0.00075, 95% CI -0.82 to -0.31

Updown, consonance r = 0.42, p<0.036, 95% CI 0.033 to 0.7

Jitter, consonance r = -0.44, p<0.029, 95% CI -0.71 to -0.05

BPM, consonance r = 0.31, p<0.13, 95% CI -0.09 to 0.63
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Table 11: Sad: means and standard deviations

Table 12: Sad: correlations with magnitude greater than 0.3



music and motion music motion

bpm 0.071 0.119 0.028

jitter 0.009 0.006 0.021

consonance 0.175 0.546 0.014

bigsmall 0.037 0.007 0.108

updown 0.708 0.323 0.829

Sadness is slow, has low jitter, is moderately dissonant, takes small steps, and 

moves decisively downward. Sad motion has a smaller step size (mean: 1.26; sd: 

2.91) than sad music (mean: 48.4; sd: 31.56), and sad music tends downward at a 

much slower rate than sad motion. Sad motion tends to be quite a bit more 

consonant than sad music, with a majority of  subjects placing the slider at the 

most consonant position. This indicates our analogical mapping of  consonance to 

spikiness is inappropriate for sadness in the context of  our model. This makes 

intuitive sense; spikes seem angry or active, and sadness is sedate and slow 

moving. We suggest an improvement of  the analogical mapping would provide a 

more natural result, e.g. instead of  simply mapping note-to-note consonance to 

spike length, it could also map to spike sharpness/dullness, so intermediate 

levels of  dissonance would produce angles and bumps but not “spikes” per se. It 

may also be possible that our mapping is correct, in which case this result could 

demonstrate a fundamental di!erence between the two domains.

 Across both tasks, and in each task individually, jitter and consonance are 

negatively correlated, suggesting that increasing jitter and decreasing 

consonance serve a similar function for sadness. Across both tasks, updown and 

consonance are correlated, meaning that the steeper the downward trajectory the 

more consonance is applied. Updown and bigsmall are negatively correlated, 
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meaning that as the downward trajectory becomes steeper, the step size becomes 

smaller. Similarly, in the music task, jitter and updown are negatively correlated. 

In each of  these three correlations, the setting in one parameter seems to 

moderate the e!ects of  the other. In the motion task, BPM and consonance are 

weakly correlated.

 Sad music and motion together are best distinguished from the other 

emotions based on consonance-updown plane position, with updown as the most 

important dimension (0.708). Sad music alone is also based distinguished on the 

consonance-updown plane, but consonance is the most important dimension 

(0.545), followed by updown (0.323), and then BPM (0.119). Sad motion alone is 

best distinguished from the other emotion based on updown (0.829) and bigsmall 

(0.108).

3.6.2.5 Scared

bpm jitter consonance bigsmall updown

Mean O 289.68 58.22 10.08 52.28 51.12

SD O 108.83 36.30 11.32 37.17 31.85

Mean Mu 293.92 57.52 10.16 62.72 54.56

SD Mu 114.16 38.59 12.11 31.63 30.52

Mean Mo 285.44 58.92 10.00 41.84 47.68

SD Mo 105.40 34.64 10.73 39.92 33.40
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Table 14: Scared: means and standard deviations



Music and 
motion

NoneNone

Music NoneNone

Motion Updown, jitter r = 0.34, p<0.1, 95% CI -0.06 to 0.65

music and motion music motion

bpm 0.003 0.002 0.006

jitter 0.042 0.089 0.019

consonance 0.888 0.802 0.748

bigsmall 0.006 0.074 0.110

updown 0.061 0.034 0.116

Scared is fast, quite jittery, quite dissonant, and tends neither upward nor 

downward. Scared music tends to have a moderately large step size, whereas 

scared motion has a medium-small step size. This di!erence seems like a 

fundamental di!erence between the two modalities; while both modalities seem 

to depend on moment-to-moment unpredictability (equal probability of  upward 

and downward motion), scared movement seems tentative, as if  walking through 

a haunted house, whereas scared music is more active, as if  being chased by some 

active threat. The data for scared are almost entirely uncorrelated, with the 

exception of  updown and jitter in scared motion.

 In every case, consonance is the most important dimension for 

distinguishing sadness from the other emotions. In music and motion together, 

updown (0.06) and jitter (0.04) are also important; in music alone, jitter (0.088), 
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Table 15: Scared: correlations with magnitude greater than 0.3

Table 16: Scared: LDA results



bigsmall (0.074) and updown (0.034) are important, and in motion alone 

bigsmall (0.11) and updown (0.116) are important. 

3.6.3 Whole dataset analyses

Music and 
motion

BPM, jitter r = 0.45, p<5.33e-13, 95% CI 0.35 to 0.54Music and 
motion BPM, bigsmall r = 0.35, p<1.363e-08, 95% CI 0.23 to 0.45

BPM, consonance r = -0.32, p<2.04e-07, 95% CI -0.43 to -0.2

Consonance, jitter r = -0.44, p<1.79e-13, 95% CI -0.54 to -0.34

Consonance, bigsmall r = -0.33, p<1.16e-07, 95% CI -0.43 to -0.21

Music BPM, jitter r = 0.39, p< 5.69e-06, 95% CI 0.23 to 0.53

Motion BPM, jitter r = 0.52, p<6.801e-10, 95% CI 0.37 to 0.63

BPM, bigsmall r = 0.5, p<1.67e-09, 95% CI 0.36 to 0.63

BPM, consonance r = -0.48, p<1.21e-08, 95% CI -0.6 to -0.33

Consonance, jitter r = -0.58, p<8.074e-13, 95% CI -0.69 to -0.45

Consonance, bigsmall r = -0.35, p<4.89e-05, 95% CI -0.5 to -0.19

Across the whole dataset, there are five moderately correlated parameter pairs. 

As subjects increase the tempo, they tend to decrease consonance, increase jitter, 

and increase step size. As subjects increase consonance, they tend to decrease 

jitter and decrease step size. When the data are limited to the music group alone, 

there is only one significant correlation with a magnitude greater than 0.3: as 

tempo is increased, jitter is increased. The motion group is correlated like the 
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combined dataset, except the sizes of  the correlations are slightly larger. There 

are more significant inter-parametric correlations within motion than music.
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Figure 3: All points on the consonance-updown plane. 
a = angry, h = happy, p = peaceful, s = sad, f  = scared.



0 5 10 15 20 25 30 35

0
20

40
60

80
10
0

Consonance

U
p-
D
ow
n

h

h

h

h

h

h

h

h

h
h

h

h

hh

h

h

h

h

h

h

h

h h

h

h

h
h

h

h

h
h

h

h

h

h

h

h

h
h

h

h

h

h

h

h h

h

h

h

h

p

p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p
p

p

p

p

p

p

p

p
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

When the dataset is considered as a whole, each emotion is best discriminated 

from the others on the consonance-updown plane. This is not to suggest the 

other dimensions are unimportant, or that examining position on the 

consonance-updown plane is su!cient to accurately determine the emotion class 

of  a data point. As the figure 4 shows, despite the results of  LDA, discriminating 
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Figure 4: Happy and peaceful data points on the consonance-updown plane. 
h = happy, p = peaceful



between happy and peaceful is impossible in terms of  consonance and updown. 

LDA assumes the data can be modeled by gaussian distributions. This is more-or-

less true for angry, sad, and scared, but not true for happy and peaceful, within 

which the positions of  the consonance slider bar are clumped up around the 

maximum. To determine the parameters which best distinguish happy and 

peaceful, we looked at the within-class covariance of  each parameter with itself, 

for both emotions.

Happy Peaceful

BPM 7664.31 1755.93

Jitter 1060.06 407.64

Consonance 70.61 81.70

Bigsmall 1185.34 595.66

Updown 286.54 402.84

Relatively large within-class covariance indicates the data points clump together 

in that dimension, suggesting its importance for between-class discrimination. 

For both happy and peaceful, within class covariance is highest for BPM and 

bigsmall. And, indeed, plotting happy and peaceful together on the bigsmall-

BPM plane (figure 5) makes it possible to cleanly discriminate between the two 

emotions.
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Table 18: Within class covariance for happy and peaceful
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As seen in table 19, consonance was found to be the parameter most important 

for discriminating between music and emotion data points. This indicates that, 

in relative terms, music subjects used consonance di!erently than motion 

subjects used spikiness. Examining the data in absolute terms, consonance values 
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Figure 5: Happy and peaceful data points on the bigsmall-BPM plane
h = happy, p = peaceful



across modalities are quite similar. A high LDA importance value may be one way 

of  distinguishing between analogical and isomorphic mappings.

BPM 0.013

Jitter 0.122

Consonance 0.621

Bigsmall 0.013

Updown 0.231

3.6.4 Similarity analysis/hierarchical clustering

The distance matrix in figure 6 was created by taking the Euclidean distance 

from every data point to every other data point. The data were not regularized. 

Broad structural features of  the data are readily apparent: angry, happy, and 

scared are similar to one another, and peaceful and sad are similar to one another. 

Because BPM has the largest range of  all of  the parameters, but is not always the 

most important for distinguishing between emotions, the distances between 

emotions at di!erent BPM levels seem exaggerated. The regularized distance 

matrix in figure 7 provides more detail.

65

Table 19: Music versus motion LDA



Where, in the raw distance matrix (figure 6), happy, angry, and scared formed 

one almost indistinguishable block, and peaceful and sad formed another block, 

in the normalized matrix each emotion is distinct. We can see that happy and 

peaceful are more similar than happy and sad. Peaceful reveals itself  as the most 

self-similar emotion, while scared is the least self-similar.
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Figure 6: Raw distance matrix



A dendrogram (in miniature in figure 8, and available in full online at 

http://beausievers.com/thesis2010/dendrogram/) was generated from the 

regularized distance matrix, using the average distance between points as the 

a!nity function. The clustering was performed by R's (R Development Core 

Team, 2008) hclust function, which, at each merge, places the tighter subtree at 
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Figure 7: Regularized distance matrix

http://beausievers.com/thesis2010/dendrogram/
http://beausievers.com/thesis2010/dendrogram/


the top. Across the dendrogram, music and motion are mixed together, providing 

further confirmation that the dynamics of  emotion function similarly across 

these modalities. Of  the two first-level subtrees, the top subtree contains mostly 

happy, sad, and peaceful data points, while the bottom subtree contains mostly 

angry and scared. Most of  the sad data points are contained within their own 

fourth-level subtree, whose closest (also fourth-level) neighbor is a subtree 

comprising most of  the peaceful data points. The bottommost first-level subtree, 

containing mostly angry and scared data points, is more confused. Angry data 

points tend to clump together in large groups, and there are a few small groups 

of  similar scared data points, especially in the bottommost third-level subtree. 

Scared, however, is confused with angry in the bottommost first-level subtree, 

but occasionally sneaks into the topmost first-level subtree as well. Notably, the 

first-level of  the tree does not divide the data points by either valence or arousal.
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0.0 1.0 2.0 3.0

happy motion 284 0 37 97 35
happy music 277 4 37 77 43

happy motion 330 6 37 87 46
happy motion 238 3 37 100 57

happy motion 237 0 29 90 50
sad music 104 20 27 94 77

sad music 93 20 30 71 70
happy music 148 26 37 100 34
happy motion 179 24 35 96 46
happy motion 217 30 35 92 52

sad music 82 2 35 100 50
peaceful music 31 7 34 100 54

happy motion 98 2 37 81 44
happy motion 150 0 37 84 52

sad motion 37 1 22 1 94
sad motion 63 30 36 19 89
sad motion 47 28 37 3 100

sad motion 126 5 32 2 98
sad motion 30 0 37 0 100
sad motion 30 0 37 0 100
sad motion 30 0 37 0 100
sad motion 30 6 37 0 100
sad motion 36 5 36 0 100

sad motion 52 0 37 4 95
sad motion 56 0 37 2 100
sad motion 79 0 37 0 100
sad motion 70 0 37 0 100

sad motion 30 0 37 0 89
peaceful motion 43 0 37 2 88

sad music 33 0 35 0 83
peaceful music 41 0 37 0 78

sad motion 73 7 37 1 90
sad motion 44 7 37 11 89

peaceful motion 63 0 37 12 82
sad music 30 2 36 47 76
sad music 32 9 36 53 95

sad music 69 16 36 46 86
scared music 55 32 22 29 70

sad music 53 15 28 25 77
sad motion 44 52 30 37 98

sad motion 49 66 36 4 96
sad motion 30 46 30 0 97
sad motion 49 47 16 1 93

scared motion 102 83 15 9 89
peaceful motion 30 64 37 0 53
peaceful music 67 65 37 13 23
peaceful motion 30 12 37 51 0

happy motion 109 0 37 64 6
happy motion 176 2 36 54 23
happy motion 128 5 37 63 35

sad music 39 8 34 66 35
peaceful motion 30 0 37 53 29
peaceful motion 76 1 37 53 26
peaceful motion 64 2 37 35 19
peaceful music 87 8 36 34 36

peaceful motion 118 0 37 43 30
happy music 278 0 37 21 40
happy motion 164 0 37 0 54

peaceful music 173 0 37 13 39
peaceful motion 37 0 37 15 6

peaceful motion 45 2 37 5 1
peaceful motion 61 0 37 2 1
peaceful music 50 0 37 0 33

peaceful motion 30 0 37 0 20
peaceful motion 50 0 37 3 18
peaceful music 54 9 33 21 21
peaceful music 92 0 37 21 32

peaceful motion 78 0 37 14 33
peaceful music 53 4 37 17 24
peaceful music 72 0 37 12 18

peaceful motion 94 0 37 14 23
sad music 46 9 36 49 49

peaceful music 43 9 37 49 49
peaceful music 30 2 37 29 42

peaceful motion 30 0 37 24 58
happy motion 110 4 37 38 51

peaceful motion 83 0 37 35 55
peaceful music 74 0 37 27 54
peaceful motion 30 0 37 0 55
peaceful motion 30 0 37 0 51
peaceful motion 54 0 37 0 42
peaceful music 71 0 37 4 47

peaceful motion 67 0 37 9 48
peaceful music 66 18 29 7 55

peaceful music 66 24 37 13 50
peaceful motion 65 18 25 27 54
peaceful music 85 11 27 27 41

peaceful music 79 4 33 18 51
sad music 79 1 31 24 43

peaceful music 136 53 20 26 55
sad music 92 45 11 37 65

peaceful music 196 5 18 20 60
happy motion 156 0 20 24 68

peaceful music 50 26 20 24 39
peaceful music 67 26 16 21 32

sad music 82 22 10 24 56
peaceful music 125 13 11 19 42

peaceful music 87 23 10 14 34
sad motion 38 14 16 0 64

sad music 46 0 6 9 71
sad music 40 5 8 34 62
sad music 35 3 4 34 60

happy music 332 51 17 56 39
happy music 337 65 19 55 38

happy music 367 71 34 100 41
happy motion 346 52 30 87 39
happy motion 335 60 36 90 44

angry music 275 70 28 72 43
scared music 297 82 28 81 19

scared motion 292 86 24 100 90
scared music 393 88 20 78 86
happy motion 358 66 36 49 71
angry music 398 84 36 100 67
happy music 347 78 37 82 68

happy music 400 89 37 11 0
happy motion 399 99 37 3 4

happy motion 239 52 30 37 23
happy music 343 68 33 22 13
happy music 291 60 37 13 28
happy music 265 77 36 20 23
happy music 374 48 35 29 43
happy music 316 31 36 30 45

happy motion 231 59 34 52 53
happy music 225 44 37 28 45
angry music 341 80 30 36 51

scared music 337 99 35 23 52
angry motion 361 94 35 22 67
happy music 395 95 37 13 30
angry motion 400 99 27 10 44
happy music 310 68 22 24 49

scared motion 328 85 19 11 44
scared music 319 98 11 37 65
happy music 373 93 15 25 46
angry music 400 99 16 43 42

happy music 286 1 37 53 0
happy motion 263 23 37 71 14
happy motion 231 22 37 65 26
scared motion 332 0 22 57 41
angry music 400 13 35 64 27
happy motion 400 0 37 41 42
scared motion 400 0 31 15 62
scared music 367 12 30 6 69
peaceful motion 225 0 37 2 0
happy music 341 9 32 17 20

happy music 400 0 37 0 24
happy music 340 0 37 3 19
happy music 361 0 37 3 26

happy music 325 26 23 7 16
happy music 364 20 21 4 37
scared motion 291 0 21 3 40
angry motion 380 54 6 10 51

scared music 390 7 0 1 55
scared motion 400 52 0 0 0

scared motion 268 0 8 0 6
happy music 251 53 14 11 31
scared motion 232 44 10 3 14

scared motion 154 52 9 6 15
sad motion 30 67 0 0 100
sad motion 30 99 0 0 100

scared motion 105 99 0 0 88
sad music 35 0 0 7 93

sad motion 30 3 2 1 100
scared motion 95 29 0 29 97

sad music 154 54 4 17 93
angry motion 152 52 0 2 99

scared motion 399 95 37 1 90
scared motion 400 99 4 0 100

angry music 400 99 0 1 99
scared music 400 99 0 8 78

scared motion 374 92 2 6 87
angry music 351 67 12 9 83
angry motion 322 66 1 4 96
angry motion 343 64 1 1 77
angry music 343 77 1 20 82
angry music 400 76 0 42 59
angry music 385 82 0 55 67

scared music 284 82 1 53 78
angry motion 327 92 4 55 87
angry music 387 88 4 90 93

angry motion 400 99 3 95 100
angry motion 300 82 0 87 99
angry motion 333 83 5 81 89

angry motion 400 80 0 100 59
angry motion 330 77 2 89 63

angry motion 308 61 0 100 60
scared motion 322 66 1 92 53
angry motion 292 99 0 100 71
scared music 343 98 1 90 82
scared music 354 99 0 78 67

scared motion 386 88 4 74 71
scared music 346 84 2 80 71
angry motion 352 88 3 86 72
angry motion 355 88 4 91 71

sad music 35 55 0 80 99
angry motion 199 92 0 78 83
angry music 159 58 0 87 100

angry music 192 48 5 84 89
angry motion 277 58 0 100 100

angry motion 269 67 0 100 80
sad music 72 0 18 96 97

sad music 65 0 0 81 63
scared music 97 27 1 90 73

sad music 57 18 1 100 82
angry music 218 5 0 53 97

angry music 136 7 10 87 81
angry motion 233 0 8 71 82
angry music 389 2 3 71 82
angry music 400 6 8 67 64

angry music 400 11 9 66 76
angry motion 282 0 0 85 66
angry music 400 21 0 92 66

scared motion 339 14 0 100 51
angry music 361 25 1 100 59
angry motion 343 18 1 95 59

angry music 394 20 18 100 82
scared music 371 1 2 94 100
angry music 387 4 0 100 100
angry motion 291 34 4 98 88

angry motion 400 35 0 100 100
angry motion 400 35 0 100 100

angry music 325 13 34 87 96
scared music 400 0 37 91 100

angry music 306 5 26 38 95
scared music 376 17 16 47 96

angry music 354 8 20 72 84
happy motion 232 0 17 100 25

scared music 265 4 0 96 10
scared music 400 7 0 93 0

scared motion 348 96 0 51 5
scared motion 368 64 12 100 36

scared motion 330 59 2 98 7
scared music 352 89 0 100 12
happy motion 350 76 0 99 20
scared motion 369 42 1 77 19
scared music 395 46 11 65 8
scared music 211 39 5 78 31
scared music 292 59 5 62 27

scared motion 215 69 7 69 11
peaceful music 34 10 13 82 24

sad music 33 36 7 46 13
sad motion 34 0 0 40 4
sad music 58 67 0 13 2

sad music 56 82 0 35 22
scared music 63 99 0 30 38

peaceful motion 82 66 34 92 48
peaceful motion 30 83 0 81 44
scared music 118 85 11 61 42
scared motion 132 96 2 78 43
scared music 123 85 16 97 35

scared motion 155 63 19 67 33

Figure 8: Dendrogram from 
regularized distance matrix



3.7 Discussion and directions for further research

The results confirm our hypothesis that emotionally expressive contours are very 

similar in simple music and movement. For the most part, our mean parameter 

values line up with the musical feature-emotion associations identified by Juslin 

and Laukka (2004). Further, our results are good evidence in favor of  the theory 

that recognition of  emotion in music operates mimetically with respect to 

motion, and that cross-modal mapping is implicated in the recognition process.

 Our approach also reveals a crucial shortcoming of  the typical approach to 

emotion-feature association: it is important to examine any putative feature – 

especially the use of  major and minor scales – very carefully to see whether it 

might be a subset of  some broader concept. Our subjects did not simply push the 

dissonance slider to one side or the other, dividing the notion of  dissonance into 

the major scale and everything else. Nor did they leave the slider predominantly 

on the consonant side, limiting the results to the major and minor scales. A 

broad range of  consonance values were selected, with consistency within 

categories, showing that major and minor scales alone are not su!cient to 

account for the role of  musical dissonance in emotion perception. In general, the 

organization of  empirical research around music theoretical terminology such as 

“major” and “minor” reifies Western cultural practice. This reification both 

limits the applicability of  experimental results and institutionalizes a vocabulary 

which cannot speak coherently about the musics of  non-Western cultures.

 Subjects in an in-progress follow-up fMRI experiment (discussed below) 

confirmed that the stimuli generated in the behavioral experiment are 

recognizable as conveying the intended emotions. Because subjects in both the 

music and motion groups used the slider bars in similar ways, our mappings from 

music to motion must have some perceptual salience. Each mapping can be read 

as an implicit hypothesis about cross-modal expression of  emotion; e.g. mapping 
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dissonance to spikiness can be read as a claim that, for the task at hand, 

dissonance and spikiness are functionally similar. The three mapping hypotheses 

confirmed by our experiment are: 1) dissonance is like spikiness, 2) pitch height 

is like angle of  orientation (i.e. looking up, looking down, leaning back, leaning 

forward), and 3) pitch interval size is like bounce height.

 This raises some important issues. First, what kinds of  mappings would 

not work? Presumably if  the directionality of  any of  these three mappings were 

inverted in one of  the modalities, music and motion subjects would use the 

sliders dramatically di!erently. An interesting change to the experiment would 

be to systematically adjust the scaling values for each mapping, or to allow 

subjects to adjust the scaling values themselves. This would allow us to measure 

exactly how movement in one modality corresponds to movement in another. 

Second, we don't have a good sense of  how interactions between the parameters 

and the mappings a!ected the results. Again, because the slider positions were 

similar across modalities, we may assume that the inter-parametric interactions 

were also similar, but we would like to be able to measure these interactions 

precisely. This recommends a future experiment in which each of  five groups of  

subjects is only given one parameter to adjust, while all the other parameters are 

held constant. This procedure would then be repeated combinatorially with 

groups of  two, three, and four active parameters at a time.

 A straightforward direction for further work is improvement of  the 

underlying statistical model. In particular, the status of  the parameter of  

dissonance is uneasy. Although our parameterization is based on perceptual 

studies, all of  those studies focused on decontextualized, note-to-note pairwise 

dissonance. This is a poor approximation of  how dissonance functions in real 

music. More preferable would be a model of  dissonance based on cross-cultural 

perceptual studies which take musical context into account, and were freed from 
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the constraints of  Western equal-temperament. Other possible improvements to 

the model include expanding its notion of  contour, which emerges in our study 

from the interaction of  upward/downward movement and big/small step size 

probabilities. Our model allows for the production of  rough trajectories, but fails 

to model contour as it occurs in a typical musical context. Contours which could 

be described as departing from and returning to a center, or contours which 

decisively change velocity and direction are impossible with our model. These 

sorts of  contours would be achievable with the introduction of  the ability to 

describe how the slider bar settings should change over time, perhaps with hand-

drawn parameter envelopes or the use of  low-frequency oscillators as parameter 

modulation signals. Still more interesting would be a perceptually grounded 

model of  contour which drew from cross-cultural research on its perception in 

various modalities and possible methods of  parameterization. Also, in our model, 

contour and range are coupled; future models may uncover interesting results by 

decoupling the starting point of  a path (or mean note frequency) from its 

contour.

 Also promising are improvements and extensions to the stimulus 

generators themselves. Simple music and motion are a good start but with some 

e!ort more detailed, realistic stimuli could be created. In the case of  music, more 

human sounding articulation and sound could be achieved, characteristic 

rhythmic patterns included, and so on. In the case of  motion, the shape and 

movement of  the ball could be made more realistic, smoothing its triangular 

surfaces and incorporating gravity, elasticity, weight, and other similar 

parameters into the rendering process. Improving the rendering of  the ball might 

well improve the analogical mapping from dissonance to spikiness: if  the spikes 

associated with smaller dissonance levels were rounded (low energy roughness) 

instead of  pointy (high energy roughness), slider positions for sad motion might 
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move closer to those for sad music. Beyond simple improvements to our present 

approach, stimuli could be generated in a number of  other modalities. Instead of  

a bouncing ball, the statistical model could be mapped to a walking human, the 

gait of  a dog, the movement of  a car, and so on. Any of  these proposed changes 

may in turn suggest additional modifications to the underlying model.

 Following Juslin (2000), an experiment which asks subjects to judge the 

emotionality of  stimuli generated by other subjects and assessing the results 

using Hursch's (1964) lens model equation could o!er further confirmation of  

the perceptual validity of  the mappings used. The results from this, the present 

study, and others like it could be used as analytical tools. A number of  attempts 

have been made to develop systems for automatic emotion recognition in speech 

(Ververidis et al., 2004), movement (Bernhardt and Robinson, 2007), and music 

(Liu et al., 2003). These approaches could be augmented by the inclusion of  data 

from generative experiments. The data could also be used to assist sonification 

designers in reliably conveying emotion (Childs, 2003). To these ends, it will be 

necessary to be explicit about what sorts of  musical behaviors correspond with 

what movements and emotions, exactly. As Alexander (1977) developed a catalog 

of  architectural patterns, one could construct a catalog of  patterned relations of  

music, movement, and emotion. One should note that music-movement 

correspondence is in no way limited to emotional signification, biological motion 

or human movement. In this view, cataloging patterns within the music-motion-

emotion nexus could be seen as a filling-in of  Smalley's (1995) notion of  the 

indicative field. Iyer (2002) also points in this direction.

 We are presently engaged in an fMRI experiment to explore the neural 

correlates of  cross-modal emotion recognition. We hypothesize cross-modally 

mappable contours share neural representations regardless of  presentation 

modality, i.e. that there is an area of  the brain which responds to e.g. happy 
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music and happy motion in the same way. Our experiment presents subjects with 

a battery of  music and motion stimuli based on the results of  the behavioral 

experiment described above. A preliminary general linear model analysis of  the 

data has yielded encouraging results, and a detailed multi-voxel pattern analysis 

(Norman et al., 2006) is forthcoming.

3.7.1 Testing for cross-cultural validity

We believe the evidence presented above for cross-modal perception of  emotion 

from studies of  feature-emotion association, visualization, synesthesia, infant-

directed speech and music (as well as in the present study) are compelling, and 

that dynamic contour sits at the core of  a certain kind of  emotion perception. 

We suggest that there exists a set of  emotions which may be represented by 

characteristic patterns of  dynamic information, in any modality which will bear 

those patterns. That is, these emotions are expressed by the presence of  certain 

features (e.g. slowness, smoothness, upwardness, bigness, consonance, etc.) in a 

gesture, event, or utterance in any modality where those features may obtain (by 

parametric isomorphism, analogy, or otherwise). Further, we would also like to 

tentatively suggest that there exists a subset of  these emotions which may be 

represented without allusion to any specifically cultural context, i.e. that they 

are recognizable by their similarity to universal human behavioral 

predispositions.

 This is an empirical claim which can be tested by generalizing the present 

research to a wider variety of  modalities, and performing the experiment 

described in wider variety of  cultural contexts. This is a challenging proposal, 

and we'd like to suggest some modifications to the present work which might be 

necessary to follow through with it. 
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 Although we've taken pains to avoid overuse of  specifically Western 

music-theoretical concepts, our model of  musical dissonance has some 

characteristically Western features which could be a barrier to executing the 

experiment in other cultural contexts. First, our use of  equal temperament, a 

characteristically Western system, would make our stimuli sound quite unusual 

to someone with no exposure to Western music. While it's likely that categorical 

pitch perception would smooth over some of  the di!erences, the cross-cultural 

interaction of  tuning systems and dissonance perception has not been studied in 

a way which would allow us to make any presumptions. Secondly, our choice of  a 

piano sound, while more-or-less neutral within a Western context would have an 

entirely di!erent set of  connotations to someone who grew up under e.g. colonial 

British rule, opening up the experiment to exactly the kind of  allusion we need 

to avoid.

 Further, these kinds of  problems will persist no matter what models, 

sounds, and modes of  presentation are engineered. While we claim there is 

something universal in musical contour, any expression of  that contour will 

necessarily be specific and culturally contingent. Rather than attempting to 

remove all traces of  culture from the model in the present study, it would be 

more fruitful to aim for relative neutrality within the context of  the host culture 

in which the experiment were being performed. For example, running the 

experiment in Cambodia might require the use of  various other intonation 

systems, and a switch from piano to a wooden flute sound. This also opens up the 

possibility of  running the experiment using sounds and temperaments contrary 

to the normal practices of  the host culture, which would certainly yield 

interesting results. Rather than sweeping cultural di!erences aside, we need to 

acknowledge and accept them as an area of  inquiry: what we are studying is not 

just how people are the same, but also how they're di!erent. A challenge 
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associated with this relativistic approach would be finding a method of  recording 

and analyzing data su!ciently general to account for each included culture.

 Related to the question of  cross-cultural validity is the possibility of  

using stimulus generation systems to test how certain populations conceive of  

the dynamics of  di"erent emotions. Once the bounds of  normal behavior (either 

within a culture or universally) are discovered, it becomes possible to identify 

and study subjects who are outside of  those bounds. Of  particular interest are 

psychopaths, patients su"ering from clinical depression or autism spectrum 

disorder, and others whose approach to emotion is abnormal.

 Our schema for classifying cross modal mappings (presented in section 

2.3) could be expanded and improved. Specifically, the possibility that analogical 

mappings could in fact be second-order parametric isomorphisms seems worth 

investigating; a study of  the neural correlates of  analogical vs. parametrically 

isomorphic mappings could provide useful evidence. We hypothesize that most 

analogical mappings depend upon what Spector and Maurer call “a common code 

for magnitude”, while most parametrically isomorphic mappings are based on 

shared neural responses to similar stimuli in di"erent modalities; e.g. increases in 

speed in both the visual and auditory domains may elicit a higher neural firing 

rate.

3.7.2 Implications of  the experimental paradigm

This question of  how emotion is encoded in parameters common to music and 

movement is a specific instance of  a more general problem, which is the empirical 

investigation of  the relationship between perceptual phenomena (or categorical 

judgments) and proposals for their parameterization. Techniques such as 

principal component analysis and single value decomposition can provide 

quantitative information about the dimensions on which a data set varies, but 
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the results provided do not always line up with perceptual data or 

phenomenological reports. Our methodology provides a way of  shortening this 

gap, evaluating a proposed parameterization of  a phenomenon in terms of  the 

decision making processes of  human subjects.

 Stated in general terms, the approach taken by the present work is as 

follows. 1) Select some complex perceptual phenomenon. The present study 

examines emotion as expressed in music and motion, although a number of  other 

candidates present themselves. These candidates may tend toward seemingly 

universal, abstract ideas, such as the shapes or forms of  objects, categorization of 

movement as implying behavior, and the perception of  musical behavior as 

described by e.g. Smalley (1995), or musical gestalts as described by e.g. Tenney 

(1986). Other good candidates include judgments of  appearance, such as whether 

someone looks like they're lying, or the apparent intentions of  an automobile 

driver. 2) Determine, by looking to the literature, doing preliminary pilot 

studies, and consulting domain experts, a candidate parameterization of  the 

phenomenon. For example, whether or not someone appears to be lying may be a 

function of  their facial expression and the speed and pitch contour of  their voice. 

(Note that this approach can only test appearance, not reality. A person may 

appear to lie but still be telling the truth.) 3) Build a stimulus generation system 

which allows naïve users to easily create exemplars of  the phenomenon under 

investigation. 4) Analyze the settings chosen by those subjects to determine the 

relative contribution of  each parameter. A variation on this approach, in the case 

of  a set of  parameters which are di!cult for naive users to understand, or which 

describe a possibility space of  unmanageable size, is to sample the full breadth of 

the possibility space at some su!ciently small interval, creating a stimulus for 

each sample. The subjects are then instructed to sort and categorically label each 

stimulus as they see fit.
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 Note that this approach cannot reveal whether a phenomenon is 

universally perceptible, absolutely grounded, authentic, or completely and 

perfectly decomposable into the proposed parameterization. We can only show 

how subjects decide to use a given parameterization/generative system pair for 

encoding comprehensible representations of  the phenomenon. Even if  the results 

of  an experiment of  this type are strong, the generated stimuli are likely to be 

much simpler than the naturally occurring phenomena they are meant to 

represent. Any parameterization approaching completeness (if  such a thing is 

possible) would be large enough that a subject-driven stimulus generation 

system would be too complex to use, and a suitably dense sampling of  the 

possibility space too vast to test in a reasonable amount of  time. Further, the 

parameterization itself  may be  decomposed such that optimistic interpretations 

of  apparently strong results may be undermined. For example, if  there is some 

implicit factor X which is correlated, but perhaps nonlinearly or unreliably, with 

a factor Y explicitly accounted for in the model, triumphant statements to the 

e!ect of  “factor Y is the cause of  e!ect Z” may be completely o! the mark. Or 

we may incorrectly model some parameter as continuous when its perceptual 

analog is categorical, or vice versa. The way we model various parameters may 

bear only a superficial relationship to how those parameters are experienced by 

our subjects. We should not underestimate the complexity of  the “folk” notion 

that, for example, dissonance is important to conveying some emotion in music, 

understanding that the model of  dissonance we build is not (and perhaps can 

never be) completely isomorphic with any perceptual experience. If  our 

experiment works, we can rightly claim our model has some validity, but this 

claim is pragmatic, not absolute. We can only say the way we have modeled a 

given parameter is good enough to give us repeatable, statistically significant, 

useful results.
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